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Preface
Many people today are in management positions that require an understand­
ing of complex technical issues before the best decisions can be made for their 
company or organization. This hyperspectral remote sensing book is written 
at a level that can be understood by those who deal with land management 
issues such as mapping tree species, identifying invasive plants, and identi­
fying key geologic features.

The first half of the book explains the basic concepts and underlying 
principles that lead to the creation of a remote sensing image. This section 
will take you through all the major aspects of hyperspectral image acquisi­
tion, exploitation, interpretation, and applications. First, the introduction to 
spectral radiometry presents concepts such as radiance, irradiance, and flux; 
blackbody radiation; and atmospheric interactions. Next is a discussion of 
imaging spectrometers, including an explanation of spectral range, FWHM 
(full width half maximum), resolution, sampling, SNR (signal-to-noise ratio), 
and multispectral and hyperspectral sensor systems.

Following this introduction of how a remote sensing image is constructed 
is a series of chapters on information extraction. You will learn the under­
lying physics principles that lead to the creation of the image and how to 
interpret the information in the images.

The second half of the book describes case studies that have applied 
this information to the use of hyperspectral remote sensing in agriculture, 
forestry, environmental monitoring, and geology. The case studies in each 
chapter illustrate how hyperspectral remote sensing is being used to solve 
many of the land management issues that confront our society.

Topics for agriculture, forestry, and environmental monitoring applica­
tions include detection of crop disease, crop growth analysis, classifying 
water quality, mapping submerged aquatic vegetation, and estimating hard­
wood chlorophyll content. For geology applications, topics include detecting 
hydrocarbons and identifying and mapping hydrothermal alteration.

This book is designed to be used by people who have not used hyper­
spectral data but realize that hyperspectral technology may offer a solution to 
their application area. After reading this book, you will have a better under­
standing of how to evaluate different approaches to hyperspectral analyses, 
as well as which approaches may or may not work for the applications of 
interest to you.
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1

History and Description 
of Hyperspectral Imaging

Origins
And then there was light. And since the beginning of time, light was thought to 
be pure and singular. It wasn’t until our ancestors started exploring celestial and 
terrestrial objects that scientists started to understand light and its properties.

No one knows when the first glass prism was made, but in the beginning, 
people came up with many interesting but incorrect concepts to explain its 
effect on light. There was no question that when light passed through a prism 
it produced a spectrum of colors, as shown in Figure 1.1. People thought that 
the impurities of the glass caused this display of colors seen in a rainbow. 
But in 1666, Isaac Newton proved the glass was not the source of the colors, 
but the natural light itself.

His experiment was simple. He used one prism to separate the light into 
the color spectrum. He then used a second prism on each of the individual 
colors. When he showed that the light coming out of the second prism was 
the same as the light that went into that prism, he had proven that the prism 
was not the source of the colors.

So then scientists knew that natural light contains colors. But what is 
light? What causes the colors? Is light a particle or wave? These questions led 
to some of the greatest discoveries made by Newton and other researchers in 
modern physics and electro-optics.

Much of Newton’s greatest work was published in Principia Mathematica 
in 1687, but he still considered light to be a bullet-like particle that traveled 
in a straight beam, in contrast to scientists like Christian Huygens who had 
theorized that light moved in waves. It was not until 1803 that Thomas Young 
was able to prove the motion of light followed wave patterns (Young, 1804). 

Figure 1.1  Light passing through a prism.
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�	 Hyperspectral Remote Sensing: Principles and Applications

His experiment is repeated on almost a daily basis in physics classrooms 
around the world. Called the “double slit” experiment, its simple and clear 
methodology proves that light has wave properties.

His experiment is based on the theory that interacting waves have con-
structive and destructive interference, much like when you throw two 
pebbles in a pond and the waves meet. A collimated beam of light is projected 
through a tiny hole or shutter. This column of light is then passed through a 
narrow, vertical slit and projected on a screen or another surface. A represen-
tation of interference patterns is shown in Figure 1.2.

At about the same time in the 1800s, William Herschel was also expand-
ing on Newton’s glass prism discovery. Herschel observed that the different 
colors actually varied in temperature. Blues and greens were cooler, while 
reds were warmer. In fact, he further discovered that the energy present 
outside the red spectrum was warmer yet, and this region became known as 
infrared. This was the first documented reference that the visible light spec-
trum was related to frequency and wavelength, as shown in Figure 1.3.

These discoveries of the interrelations among color, frequency, and wave-
length laid the framework for hyperspectral remote sensing because these 
fundamental principles can be used to characterize the reflection of light 
against objects.

Once modern aviation became a safe and viable platform, the integra-
tion of remote sensing technology was inevitable. The U.S. Department of 
Defense (DoD) and the National Aeronautics and Space Administration 
(NASA) have been strong advocates for remote sensing and have sponsored 
the development of many systems.

Figure 1.2  Interference pattern.
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Figure 1.3  Visible spectrum with wavelengths in nanometers.
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Chapter one:  History and Description of Hyperspectral Imaging	 �

From the beginning, airborne imagery of terrestrial objects was a vital 
form of information to detect objects and features on the ground. Mono-
chrome and panchromatic cameras were the first class of remote sensors 
used for aerial photography, reconnaissance, and surveillance in both civil 
and commercial capacities.

In the 1960s, the DoD retrofitted the infrared film cameras on the U-2 high-
altitude reconnaissance plane with special spectral filters. These cameras 
were among the first multispectral cameras in existence.

In July 1972, NASA launched the Earth Resources Technology Satellite 
(ERTS), which later became Landsat 1. The system was designed for extensive 
mapping and remote sensing of the Earth’s surface and was the first system 
capable of producing multispectral data in digital format. The applications 
of Landsat imagery have been demonstrated in agriculture, cartography, 
environmental monitoring, forestry, land use planning, and oceanography.

With the innovation of faster computers that could handle the enormous 
amount of data required from new and improved spectrometers, hyperspectral 
remote sensing has flourished in the defense and commercial sectors.

Definitions
The term “multi” is derived from the Latin word for “many” and “hyper” is 
the Greek word for “over,” “above,” or an “exaggerated amount.” These, com-
bined with “spectral,” which relates to colors, are combined to form “multi
spectral” and “hyperspectral,” which figuratively mean “many colors.” The 
science of multispectral and hyperspectral remote sensing is based on taking 
a portion of the electromagnetic spectrum and breaking it into pieces for the 
purpose of analytical computations.

The following basic terminology is defined to further explain the basics of 
the electromagnetic spectrum and hyperspectral remote sensing.

Photon

A photon is a discrete particle of electromagnetic energy having no mass, no 
electric charge, and an indefinite life. The existence of photons was first based 
on the interpretation of experimental results and presented in a scientific paper 
by Albert Einstein in 1905.

The energy E of any photon is related to its frequency as follows, where 
h is Planck’s constant (6.626068 × 10–34 m2 kg/s) and υ is the frequency:

	 E = hυ

Electromagnetic Spectrum

Each photon of the electromagnetic spectrum has a wavelength determined 
by its energy level. Light and other forms of electromagnetic radiation 
commonly are described in terms of their wavelengths. The visible spectrum 

L1654_C001.indd   3 9/10/07   9:30:57 AM
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is shown in Figure 1.3. Its relationship to the entire electromagnetic spectrum 
is detailed in Figure 1.4.

Speed of Light

Up until the 17th century, scientists believed that light was instantaneous 
and could travel any distance in no time. Galileo disagreed and tried to dis-
prove the theory with shuttered lanterns on adjacent hilltops. He failed—not 
in theory, but in execution. He was too close to quantify the measurement 
he was seeking.

In 1675, Danish astronomer Olaf Roemer was making precise measure-
ments of the orbit of Io, one of Jupiter’s moons. With these observations, 
Roemer should have been able to predict Io’s location precisely. But over the 
course of time, when he realized the measurements seemed inaccurate, he 
was able to relate the inaccuracies with the time of year. Io seemed to be 
ahead of schedule when Earth was closer to Jupiter and behind schedule 
when Jupiter was farther away. He began to wonder if the reflected light of 
Jupiter and Io took time to travel. Roemer then became the first to calculate 
the speed of light at about 186,000 miles per second. Since then, more precise 
instruments and methods allow us to measure the speed of light, like plac-
ing mirrors on the moon and using the laser time-of-flight to further refine 
the speed, but Roemer wasn’t that far off.

The designation for the speed of light is c and is related to the frequency υ 
and the wavelength λ in any part of the electromagnetic spectrum.

	 c = υλ

Emission and Reflection

Photons can be absorbed, reflected, or transmitted. In the realm of thermo
dynamics, radiated heat creates photons. Radiation heat transfer is the 

400 500 600 700
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Figure 1.4  Electromagnetic spectrum.
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Chapter one:  History and Description of Hyperspectral Imaging	 �

exchange of thermal radiation energy between two or more bodies. Thermal 
radiation is defined as electromagnetic radiation in the wavelength range of 
0.1 to 100 microns.

Radiation heat transfer must account for both incoming and outgoing 
thermal radiation and can be expressed as:

	 l = εreflected + εabsorbed εtransmitted

Because most solid bodies are opaque to thermal radiation, transmission 
can be ignored.

	 l = εreflected + εabsorbed

To account for emissive radiation, a comparison is made to a perfect 
blackbody, which is a theoretical object that absorbs 100% of the incident 
radiation, reflects none, and appears perfectly black. The ratio of the actual 
emissive radiation E to the emissive power of a blackbody is defined as the 
surface emissivity ε.

	 ε = E/Eblackbody

Reflectance is the percentage of incident light that is reflected by a mate-
rial. In climatology and remote sensing, reflectivity is commonly referred to 
as “albedo,” the Latin term for white.

Reflectivity R can be expressed as:

	 R = 1 – ε

Surface reflections can be specular or diffuse. Figure 1.5 depicts specular, 
or mirrorlike, reflections where the incident wave I of energy against the 
surface is the same as the reflected wave R. The incident and reflected angles 
are denoted as θ. N is the angle normal to the reflecting surface.

The difference between specular and diffuse (or Lambertian) scatter-
ing as shown in Figure 1.6 is based on surface roughness and granularity. 

I
R

N

θIθi

Figure 1.5  Specular reflection.
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As surface roughness increases, so does the amount of diffuse scattering. 
The size of the particles on the surface, not the quantity, contributes more to 
the diffuse scattering. A desert or beach with small grains of sand may act 
almost as a specular surface.

Emissivity and reflectivity are two of the fundamental physics principles 
that govern hyperpsectral remote sensing. The portion of the electromagnetic 
spectrum sought for exploitation from a hyperspectral sensor—visible, near 
infrared, shortwave infrared, midwave infrared, or longwave infrared—will 
define the design specifications for sensor optics and detector array, as well 
as the application of the remote sensor.

Reference
Young, T. 1804. The Bakerian lecture: Experiments and calculations relative to 

physical optics, Philosophical Transactions of the Royal Society of London, 94, 1–16.

Specular Reflection
(smooth surfaces)

Diffuse Reflection
(rough surfaces)

Figure 1.6  Specular vs. diffuse reflections.
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Spectral Radiometry
Any hyperspectral data collected from an airborne or spaceborne platform 
is influenced by the atmospheric conditions at the time the data is collected. 
If the weather is sunny and clear, the data will be optimum. Data collected 
when the atmosphere is cloudy or humid, however, will be affected by those 
conditions. Therefore, knowing the principles of spectral radiometry and 
understanding how to use its concepts is important when interpreting the 
data collected by hyperspectral sensors.

Principles of Spectral Radiometry
Radiometry is the physical measurement of electromagnetic radiation within 
the ultraviolet, visible, and infrared wavelengths. A radiometer is a device 
used to measure the radiant flux or power in electromagnetic radiation. The 
most important characteristics of a radiometer are spectral range (wavelengths 
measured), spectral sensitivity (sensitivity vs. wavelengths measured), field 
of view (18 degrees or limited to a certain narrow field), and directional 
response (typically the cosine response of the unidirectional response).

Radiometers can use all kinds of detectors. For example, thermal detectors 
absorb energy and convert it to a signal. Photon (photodiode) detectors have 
a constant response per quantum (light particle). The radiation detector 
within a radiometer is usually a bolometer, which absorbs the radiation 
falling on it and, as a result, rises in temperature. This rise can then be 
measured by a thermometer. This temperature rise can be related to the 
power in the incident radiation.

Solid Angles
The radiant intensity describes the flux per unit solid angle from a point 
source into a particular direction. Although the intensity provides direc­
tional information, it does not provide any spatial information. The simplest 
term used to describe directional or dispersive information involves the 
solid angle.

A plane angle is the angle formed by two lines meeting in the same plane. 
Plane angles are measured in either degrees or radians (Figure 2.1). The 
abbreviation for the radian is rad. Because a circle has 2π radians, the conver­
sion between degrees and radians is 1 rad = (180/π) degrees.

A solid angle (Figure 2.2) extends the concept of a plane angle to three 
dimensions. The solid angle is the ratio of the spherical area to the square of 
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the radius. The spherical area is a projection of the object onto a unit sphere, 
and the solid angle is the surface area of that projection. When you divide the 
surface area of a sphere by the square of its radius, the result is 4π steradians 
of solid angle in a sphere. One hemisphere has 2π steradians.

Radiance, Irradiance, and Flux
Radiance and spectral radiance are radiometric measures that describe the 
amount of light that passes through or is emitted from a particular area and 
falls within a given solid angle in a specified direction. These measures are 
used to characterize both emission from diffuse sources and reflection from 
diffuse surfaces. The SI unit of radiance is watts per steradian per square 
meter (W·sr–1·m–2).

Radiance characterizes total emission or reflection, while spectral radiance 
characterizes the light at a single wavelength or frequency. The radiance is 
equal to the sum (or integral) of all the spectral radiances from a surface. The 
SI units for spectral radiance are W·sr–1·m–3 when measured per unit wave­
length, and W·sr–1·m–2·Hz–1 when measured per unit frequency interval.

Radiance is useful because it indicates how much of the power emitted 
by an emitting or reflecting surface will be received by an optical system 
looking at the surface from some angle of view. In this case, the solid angle 
of interest is the solid angle subtended by the aperture of the optical system. 
Because the eye is an optical system, radiance and luminance are good indi­
cators of how bright an object will appear. For this reason, radiance and 
luminance are both sometimes called “brightness.” Although this usage is 
discouraged, the nonstandard usage of brightness for radiance persists in 
some fields, notably laser physics.

The radiance divided by the index of refraction squared is invariant in 
geometric optics. This means that for an ideal optical system in air, the 

Arc Length

1 Radian

Radius Length

The angle equals 1 radian when the
arc length equals the radius length

Figure 2.1  Definition of a radian. Figure 2.2  Solid angle cube 
(Weisstein, 2005).
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Chapter two:  Spectral Radiometry	 �

radiance at the output is the same as the input radiance. This is sometimes 
called conservation of radiance. For real, passive, optical systems, the output 
radiance is at most equal to the input, unless the index of refraction changes. 
For example, if you form a demagnified image with a lens, the optical power 
is concentrated into a smaller area so the irradiance is higher at the image. 
The light at the image plane, however, fills a larger solid angle so the radi­
ance comes out to be the same, assuming there is no loss at the lens.

“Irradiance,” “radiant emittance,” and “radiant exitance” are radiometry 
terms for the power of electromagnetic radiation at a surface per unit area. The 
term “irradiance” is used when the electromagnetic radiation is incident on the 
surface. The other two terms are used interchangeably for radiation emerging 
from a surface. The SI units for all of these quantities are watts per square meter 
(W/m2). These quantities are sometimes called “intensity,” but this usage leads 
to confusion with “radiant intensity,” which has different units.

All of these quantities characterize the total amount of radiation 
present, at all frequencies. Each frequency is also commonly considered 
in the spectrum separately. When this is done for a radiation incident 
on a surface, it is called “spectral irradiance” and has SI units W/m3, or 
commonly W·m–2·nm–1.

If a point source radiates light uniformly in all directions and there is no 
absorption, then the irradiance drops off in proportion to the distance from 
the object squared because the total power is constant and spread over an 
area that increases with the square of the distance from the source.

Radiant flux or radiant power is the measure of the total power of electro­
magnetic radiation (including visible light). The power can be the total 
emitted from a source or the total landing on a particular surface.

Radiance vs. Reflectance
Radiance is the variable directly measured by remote sensing instruments. 
Radiance is the amount of light the instrument detects from the object being 
observed. When looking through an atmosphere, some light scattered by the 
atmosphere will be seen by the instrument and included in the observed 
radiance of the target. An atmosphere will also absorb light, which will 
decrease the observed radiance.

Reflectance is the ratio of the amount of light leaving a target to the 
amount of light striking the target. If all of the light leaving the target is inter­
cepted for the measurement of reflectance, the result is called “hemispherical 
reflectance.” Hemispherical reflectance is a property of the material being 
observed. Radiance, on the other hand, depends on the illumination (both 
its intensity and direction), the orientation and position of the target, and the 
path of the light through the atmosphere.

When the atmospheric effects and solar illumination are compensated for 
in digital remote sensing data, the result is apparent reflectance. The differ­
ence between apparent reflectance and true reflectance is that in apparent 
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10	 Hyperspectral Remote Sensing: Principles and Applications

reflectance, the shadows and directional effects on reflectance have not been 
dealt with (Ray, 1994).

Blackbody Radiation
A blackbody is a theoretical object that absorbs 100% of the electromagnetic 
radiation that hits it. No radiation passes through it and none is reflected. 
Therefore, it appears perfectly black. These properties make blackbodies 
ideal sources of purely thermal radiation because the amount and wave­
length (color) of electromagnetic radiation they emit are directly related to 
their temperature (Figure 2.3).

At a particular temperature, the blackbody emits the maximum amount of 
energy possible for that temperature. The value of this light is called “blackbody 
radiation.” Blackbodies above 700 K (430°C) produce radiation at visible wave­
lengths starting at red and ending up at blue as the temperature increases.

Although some materials come very close to being perfect emitters in some 
wavelength ranges, no real material is a perfect blackbody. Fortunately, during 
the late nineteenth century, physicists discovered that a cavity with walls 
thick enough to prevent any radiation from passing directly through them 
behaved like a blackbody and emitted the same radiation. For this reason, 
blackbody radiation is sometimes called “cavity radiation.” These physicists 
determined the empirical relationship between blackbody radiation and the 
two variables on which it depends, temperature and wavelength.

Solar Irradiance and Atmospheric Path Radiance
“Total solar irradiance” is defined as the radiant energy of the sun emitted 
over the entire electromagnetic spectrum that falls each second on 1 square 
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Figure 2.3  Blackbody radiation.
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Chapter two:  Spectral Radiometry	 11

meter outside the atmosphere of the Earth. In simpler terms, solar irradiance 
is the output of energy from the sun through the generation and emission 
of light. Variations in the solar radiance are recorded in the visible, infrared 
(IR), ultraviolet (UV), extreme ultraviolet (EUV), and x-ray portions of the 
electromagnetic spectrum. Irradiance is a measurement of the total bright­
ness at any given wavelength. Solar irradiance is the primary source of 
energy reaching the Earth. Solar irradiation is cyclic, and its correlation to 
sunspot activity is clearly seen in Figure 2.4.

The measurement of solar irradiance has been conducted from satellites 
and correlated to ground-based observation of the sunspot activity that gen­
erally occurs over an 11-year cycle. Satellite-based observations are depicted 
in Figure 2.5.

Over the solar irradiance cycle, significant changes occur that impact the 
type and amount of solar energy that is released. The impact of this change 
is wavelength and time dependent. Some changes are slight over the cycle. 
Other changes happen in an order of minutes and can be drastic.

Solar irradiance is directly proportional to sunspot activity. The bright 
areas around the sunspots are called “faculae.” Sunspots, which appear as 
dark spots on the surface of the sun, are areas of intense magnetic activity that 
work to block the solar plasma. Sunspots tend to be cooler than other areas, 
including the faculae. The faculae are responsible for the increased solar 
irradiance. Faculae are also the result of solar magnetic activity. Figure 2.6 
shows an image of sun spots.

The faculae tend to increase and decrease according to the sunspot activ­
ity. Even though the increase in solar irradiance is attributed to the increase 
in faculae when the sunspots also increase, the amount of solar irradiance 
that reaches the Earth actually decreases during the maximum sunspot 
activity. On average, the effects of the faculae have more impact on the solar 
irradiance than the sunspots. Even though the total solar energy reaching 
the Earth decreases when the surface of the sun that faces the Earth has 
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Figure 2.4  Total solar irradiance over a 30-year cycle (Wikipedia).
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12	 Hyperspectral Remote Sensing: Principles and Applications

many sunspots and faculae, the total energy averaged over a full 30-day 
solar rotation actually increases.

Atmospheric path radiance is a result of the interaction of radiation with 
scattering particles in the sky and specularly reflected light from surfaces 
such as water. Atmospheric path radiance can have an impact to the spectral 
signature of objects on the ground. The atmospheric path radiance from light 
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Figure 2.5  Total solar irradiance from the Solar Maximum Mission (SMM) space­
craft, from the Earth Radiation Budget Satellite (ERBS), from the NOAA-9 and 10 
platforms, and from the Upper Atmospheric Research Satellite (UARS). (Courtesy of 
National Geophysical Data Center.)
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Figure 2.6  Image of sunspots, faculae, and filaments. (Courtesy of Big Bear Solar 
Observatory.)
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Chapter two:  Spectral Radiometry	 13

scattered from vegetation such as tree leaves can cause some of the spectral 
properties to be transferred to the next reflective object. This interaction is 
commonly referred to as “green shine.”

Theory of Atmospheric Correction
Atmospheric correction is required to accommodate for the solar radiation 
interactions with the atmosphere. The quality of the atmospheric correction 
algorithms directly impacts the quality of the remote hyperspectral data pro­
cessing and exploitation, and affects the ability to make accurate reflectance 
measurements from satellite and airborne remote sensors.

Factors that contribute to the successful collection of remote sensing 
data are the diligent and quantifiable calibration of the instrument, the 
measurement and analysis of atmospheric properties, the proper applica­
tion of radiative transfer algorithms that perform the atmospheric correction, 
and the ability to accurately collect or model surface properties such as 
reflectance and temperature.

Atmospheric correction generally requires at least three steps. First, the 
condition of the atmosphere is characterized and the column concentra­
tion of water present during the collection is identified. Second, the data 
is corrected based on this information and the reflectance is transformed. 
Third, during post-processing, any remaining artifacts are removed. The 
atmospheric correction process is optional and might not be required 
depending on the fidelity of the data required.

Modeling Target Interactions with Scattering by 
Arbitrarily Inclined Leaves (SAIL)
The interaction between light and vegetation—primarily leaves and 
grasses—is dominated by the surface characteristics, thickness, and vein 
structure of the vegetation. The primary function of a leaf is to capture the 
light and perform photosynthesis to create nutrients such as plant sugars. 
The natural evolution of the leaf has created a large surface area for the 
collection of light (Figure 2.7).

SAIL is a computational model to predict the spectral reflectance of uni­
form homogeneous vegetation canopies (Verhoef, 1984). SAIL is based on 
the radiative transfer theory to model the electromagnetic energy through 
different levels of foliage and canopies. The three sources of flux flow are the 
downward flux from direct radiation, the downward flux of diffuse radiation, 
and the upward flux of diffuse radiation. For the model to work properly, 
the reflectance and transmittance of the levels must be known or obtained. 
The scattering and extinction coefficients for canopies modeled in SAIL are 
calculated based on the fixed leaf inclination angle and a random leaf azimuth 
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14	 Hyperspectral Remote Sensing: Principles and Applications

distribution. Figure 2.8 shows SAIL model simulations of canopy spectral 
reflectance for various proportions of leafy spurge cover and grasses.

Other model parameters are the leaf area index (LAI), soil reflectance, 
diffuse skylight, and illumination and viewing angle. The LAI is defined as 
the one-sided area of leaves per unit area and has values from 0 to 16. Soil 
reflectance is a percentage less than 100 and is based on the albedo. The soil 
reflectance must be known for each spectral band used in the model. Diffuse 
skylight is dependent on the cloud cover and could range as high as 100% with 
completely overcast skies to as low as 10% on clear sunny days. Illumination 
and viewing angle are required because the leaf surface is non-Lambertian.

Figure 2.7  Leaf surface with vein structure. (Courtesy of Sam Davies.)
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Figure 2.8  SAIL model simulations. (Hunt, Jr. and Parker Williams, 2006.)
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The two-component SAIL model (SAIL2) also takes into consideration 
optical and structural characteristics for leaves and stems, background 
reflectance, and the relative abundance of these components.
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3

Imaging Spectrometers: 
Operational Considerations
The goal of this chapter is to provide the basic background information you 
will need to design and evaluate the operational aspects of hyperspectral 
remote sensing projects. If you are familiar with the components of a remote 
sensing mission, you will be in a better position to assess the utility, value, 
and accuracy of the data in hand or to be collected. This is a critical aspect of 
problem solving through remote sensing. This chapter will describe sensors 
and how they work, clarify common confusions and misconceptions, 
describe typical sensor system configurations, provide an example mission 
plan, and discuss workflow considerations.

Sensors
To understand hyperspectral imaging, first you need to understand its 
sensors and how they collect data, the number of bands and bandwidth, 
the type of platform from which the data is gathered, and the resolution of 
the data. In general, sensors gather data either passively or actively. Passive 
sensors collect and record electromagnetic energy that is reflected or emitted 
by surface features, typically through an optical lens. Examples include film 
or digital cameras and thermal infrared sensors, which detect emitted heat 
energy. Active sensors generate their own energy and then collect the signal 
that is reflected from the surface of the Earth. Examples of active sensors 
include RADAR (Radio Detection and Ranging) and LIDAR (Light Detection 
and Ranging).

For hyperspectral imagery, the data source includes ten or more bands of data. 
The bandwidth of the data typically ranges from 1 to 15 nanometers (a nanometer 
is one-billionth of a meter). In contrast, multispectral data typically consist of 
3 to 7 bands of data with bandwidths ranging from 50 to 120 nanometers.

The platform from which the data is collected is either spaceborne or 
airborne. Spaceborne refers to satellite sensors, such as Landsat, Ikonos, 
QuickBird, ASTER (Advanced Spaceborne Thermal Emission and Reflection 
Radiometer), or Hyperion. Hyperion is a hyperspectral spaceborne sensor 
(using the strict definition of hyperspectral—number of bands and band-
width). Airborne refers to fixed wing (airplane) or rotary (helicopter) 
platforms. Examples of airborne hyperspectral sensors include AISA, AVIRIS 
(Airborne Visual and Infra-Red Imaging Spectrometer), CASI, and HyMap.

L1654_C003.indd   17 10/2/07   8:46:38 AM



18	 Hyperspectral Remote Sensing: Principles and Applications

Finally, resolution has two components, spatial and spectral. As explained 
in Chapter 1, spatial resolution (Figure 3.1) traditionally has been defined 
in the context of analog or film cameras as the smallest discernible spatial 
frequency. This frequency is measured in two ways: 1) in the laboratory 
using a pattern of points or bars with uniform spacing and measured in milli
meters, and 2) outside the laboratory measuring the dimensions of resolvable 
features on the ground, expressed in coordinate units such as meters, feet, 
or inches. The laboratory-based method is typically used for camera calibra-
tion, while the ground measurements, known as ground-resolved distance 
(GRD), are reported to users for mapping purposes.

Digital imagery is created using an electro-optical camera or sensor. The 
basic components of an electro-optical sensor include the charge-coupled 
device (CCD) or chip, a lens, and a field stop (Figure 3.2).

The CCD is essentially a computer memory circuit composed of silicon 
detection elements (pixels) that are sensitive to photons, analogous to the 
silver halide-coated film in a traditional camera. The CCD accepts photons in 
the range of wavelengths that it is sensitive to (dynamic range) as a collection 

1 × 1 Meter 

4 × 4 Meters  
Ikonos, Orbview, AVIRIS

AISA, CASI, SpecTIR 

Figure 3.1  Spatial resolution.

Photons
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Charge-
Coupled
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(DNs)

Figure 3.2  Electro-optical sensor.
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of electrons or a charge that represents the intensity and wavelength of the 
light received. An analog-to-digital converter changes the charge into an 
intensity value known as a digital number (DN). The lens provides focus and 
magnification of the photons, while the field stop or slit limits the amount of 
photons that pass through to the CCD.

Working together, the basic sensor components define the range of angles 
through which incident light or photons travel in reaching the CCD. This is 
termed the “field of view” (FOV). All features within the FOV are imaged, 
while those outside the FOV are not. Within the FOV at any given moment, 
one of the detection elements is exposed to light. The size of the detection 
element or pixel determines the range of incident angles of light received. 
This is called the “instantaneous field of view” (IFOV). From a spatial per-
spective, the IFOV delineates that portion of the ground that is being imaged. 
This is known as ground-sampled distance (GSD). Thus, in terms of resolu-
tion, the smallest resolvable feature would have the same extents as the GSD. 
Image geometry, platform motion, angle of illumination, and atmospheric 
conditions also affect resolution.

Although airborne multispectral and hyperspectral sensors typically 
have higher resolution, recently there has been a convergence of spatial reso-
lution between satellite and airborne sensors. Spectral resolution, measured 
in bandwidths, remains the primary discriminator between multispectral 
and hyperspectral data, regardless of platform. One way to visualize band-
width is to consider it as slices of, or the sampling interval along, a spectral 
curve. Multispectral satellite data has bandwidths ranging from 50 to 120 or 
more nanometers. This contrasts with common hyperspectral bandwidths, 
which range from 1 to 15 nanometers. Because hyperspectral sensors scan so 
many more bands than multispectral sensors, the spectral resolution is much 
greater (Figure 3.3).

An additional consideration is the location of the spectral bands within 
the electromagnetic continuum. Multispectral data can have gaps between 
the collected spectral bands, in contrast to hyperspectral data, which 
typically have many contiguous bands. Figure 3.4 contrasts the bandwidths 
of the AISA airborne and IKONOS spaceborne sensors. You can see that 
many AISA spectral bands will give greater spectral resolution than the four 
IKONOS bands.

The spectral resolution of a sensor is usually reported through two com-
ponents, spectral sampling and full width at half maximum (FWHM). As 
described above, photons or light energy impinging on CCD detection 
elements, or pixels, yield an electron charge, which is converted into DNs 
along a response curve. Figure 3.5 provides an idealized pixel response 
curve that assumes a Gaussian shape. Spectral sampling refers to the interval 
at which DNs are collected or sampled along the response curve. FWHM 
refers to the detector response derived from exposure to a calibrated mono
chromatic source.
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Multispectral Bandwidths
50–150 Nanometers Wide

Hyperspectral Bandwidths
1–15 Nanometers Wide

Figure 3.3  Number of multispectral bands compared to the number of hyper
spectral bands in the same area.

Figure 3.4  Spectral resolution.
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The assumptions are that this response is Gaussian in nature, that the 
sampling interval defines the curve, and that FWHM provides a means 
to measure the width of this curve. It describes the channel bandwidth, 
reported in microns or nanometers, and specifies the spectral resolution. 
Analogous to spatial resolution, before a unique spectral response feature 
can be detected, the feature must be larger than the FWHM interval of the 
collection system.

Confusions and Misconceptions
The benefits of high spatial and spectral resolution come with a cost in 
complexity. Confusions refer to factors that complicate the processing and 
analysis of hyperspectral imagery. Some of these factors are illumination, 
mixing and proximity, and condition.

As described above, hyperspectral imaging sensors are optical devices 
that detect the response of surface features to incident light, or illumina-
tion. Illumination effects include the amount of light, angle of incidence, and 
atmospheric conditions. In terms of amount, the time of day is an important 
consideration in mission planning and data acquisition with the ideal time 
period being between 10:00 a.m. and 2:00 p.m. This provides for maximum 
illumination and a favorable angle of incidence, or sun angle. The usual objec-
tive is to minimize shadows and tonal variation, and as much as possible, 
light spillage, which is the reflection of light from one feature onto another.
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Figure 3.5  Full width at half maximum (FWHM).
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Atmospheric conditions such as cloud cover, moisture content, haze, and 
particulate levels affect illumination by absorbing, scattering, refracting, or 
reflecting light waves. This can result in obscuring some features or modify-
ing their spectral response as detected by the hyperspectral sensor.

Mixing and proximity of surface features affect the ability of the sensor 
to detect and characterize the features of interest. Using vegetation as an 
example, considerations include whether a “patch” is dominated by one 
species (homogeneous) or many species are intermixed (heterogeneous), the 
morphology of the feature (e.g., size, growth form), phenology (e.g., deciduous 
or coniferous, annual or perennial), and number of features (e.g., dense or 
sparse). In addition, surrounding features can affect the spectral expression of 
a feature of interest. This can occur through shading or shadows, or reflection 
of radiation from adjacent features. Figure 3.6 shows an example of mixing and 
proximity. The zoom box on the left side of Figure 3.6 illustrates a relatively 
homogeneous patch of vegetation yielding a consistent spectral signature. The 
zoom box on the lower right illustrates an example of a building with a high 
emissivity roof that will affect the spectral signature of surrounding features.

Condition is another factor that modifies the spectral expression of a fea-
ture of interest. Condition includes the age and weathering of a material, 
moisture level, and health and vigor of the vegetation. Figure 3.7 shows an 
example of condition. The tonal variation visible on the rooftop in Figure 3.7 
indicates differential weathering of the dark roof material, which will affect 
the characteristics of its spectral signature across the material.

Figure 3.6  Mixing and proximity.
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System Integration and Configuration
This section provides a general overview of the configuration of a typical air-
borne hyperspectral sensor system. The configuration of a sensor installation 
varies by sensor and platform type but incorporates certain components in 
common. The term “system integration” as used in this context encompasses 
the major components of airborne sensor configurations, including optical 
sensors, inertial measurement units, airborne Global Positioning System (GPS) 
data collectors, and the flight management system. Additional considerations 
not covered here include physical details such as power requirements, power 
inverters, cabling, rack design and configuration, and weight management.

The various types of commercially available hyperspectral sensors can 
be distinguished in several ways, including spectral and spatial resolution, 
electronic design, and scanning geometry. In the context of system integra-
tion, scanning geometry provides a primary distinguishing characteristic 
and highlights other components of the sensor system. Most sensors use 
either a “whiskbroom” or “pushbroom” method to collect photon data for 
image creation.

The whiskbroom scanner uses a single detector and a rotating mirror that 
scans perpendicular to the direction of flight (crosstrack) to collect reflected 

Figure 3.7  Condition.
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light energy from a spot on the ground. The spatial extents of this spot are 
a function of the aircraft height above ground level (AGL) and the instanta-
neous field of view, as determined by the focal length of the sensor optics 
and internal design considerations. Whiskbrooms typically scan a crosstrack 
arc ranging from 90 to 120 degrees in extent, with image pixel size increasing 
at the extremes of the arc. Complexities in image geometry are introduced 
by the crosstrack-scanning pattern, the forward motion of the aircraft, the 
variability in image pixel size, and the optical distortion.

The pushbroom scanner consists of a linear array of detectors that record a 
single line of the ground in the crosstrack direction. The number and dimen-
sions of the detectors associated with the CCD comprise a line, often referred 
to as a frame. Each individual detector records spatial coordinates (x, y) and 
an entire spectral curve (z) as defined by the dynamic range of the CCD. The 
spatial extents of the area imaged on the ground are a function of the detec-
tor size, aircraft height (AGL), focal length of the sensor optics, and internal 
design considerations. The forward motion of the aircraft, optical distor-
tion effects, and detector integration time, which can cause smear, are the 
primary sources of image geometry complexity. One other consideration is 
the requirement for detector calibration and normalization of spectral data.

A sensor component that is not found in every configuration, but serves 
a valuable purpose, is some form of downwelling irradiance sensor (DIS). 
A DIS is mounted on the outside of the aircraft and pointed skyward to 
measure the incoming (or downwelling) light energy as it passes through 
the atmosphere and strikes the Earth’s surface. Light energy reflected from 
the Earth’s surface is collected by the hyperspectral sensor in radiance units, 
or DNs. This can be termed “at-sensor radiance” for the spectral dynamic 
range of the sensor.

Each pixel contains all wavelengths determined by the dynamic range 
of the sensor. Dividing at-sensor radiance for each wavelength within each 
pixel by the corresponding downwelling radiance for that wavelength 
yields the “at-sensor” reflectance. In other words, at-sensor reflectance, 
calculated using this method, is a spectral value that accounts for ambient 
light energy by normalizing detected radiance values based on down-
welling radiance values.

Two integral components are necessary for geometric correction of the 
output data, the inertial measurement unit (IMU) and an airborne global 
positioning system GPS (AGPS). The IMU, which is composed of acceler-
ometers, gyros, and a data recorder, is physically attached to the sensor and 
collects information on the attitude and orientation of the sensor. The AGPS 
collects aircraft position data at regular intervals using radio signals received 
from a constellation of positional satellites orbiting the Earth.

Postprocesssing software combines the IMU and AGPS data streams to 
calculate aircraft geographic position, velocity, and heading, as well as the 
roll and pitch of the aircraft for each interval. This information is used to 
correct the geometry of the data and relate each pixel in the output imagery 
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to a location on the ground (Mostafa et al., 2001). The data collector controls 
the actions and settings of the sensor and enables monitoring and storage of 
the data stream.

Flight management system (FMS) configurations vary by system and 
application. Of note in the context of airborne data collection is a component 
that stores and displays the programmed flight lines and current aircraft 
position and attitude. The flightlines are developed as part of the mission 
planning activity and typically input to the flight management system in 
the form of computer-aided design (CAD) files. (For additional information 
about system integration and configuration, see Mostafa et al., 2001.)

Mission Planning
Data-gathering missions are expensive and time-consuming, so planning 
and organizing as much as possible about the mission is crucial for obtain-
ing the highest quality data possible. Obviously, some components cannot 
be controlled, the most obvious being the weather conditions and amount 
of sun available for the chosen day. Other components, however, must be 
defined before the mission day: time of day for the flight, altitude, sidelap, 
flightline orientation, area of interest (AOI), number of flightlines, horizontal 
accuracy, coincident field work, and boresight flight.

Factors relating to the actual aircraft include the required altitude; flight-
line orientation, which is the direction the airplane flies (e.g., north to south); 
number of flightlines, which is the number of times the aircraft flies over the 
designated area to collect data; horizontal accuracy; and boresight flight.

Factors relating more to the sensor and collection of data include the AOI, 
sidelap, coincident field work, and archival data. Obviously, the pilot needs 
to know the location of the specific AOI, which is the point, line, or polygon 
chosen as the image area to be used in the mission. The scanner itself will 
have to be calibrated for the amount of sidelap. In a block of mapped data 
consisting of a number of parallel bandwidths, the sidelap (measured 
vertically) is the overlap of the edges of the bands (Figure 3.8).

Another step of the data-gathering mission is verifying the accuracy of 
the new data. The accuracy of the gathered data can be determined by com-
paring the data gathered from the airborne mission to data collected at the 
same time during coincident field work or to archival data.

Sidelap

Band 1

Band 2

Band 3

Figure 3.8  Sidelap.
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Workflow
Figure 3.9 shows an example of a hyperspectral data processing workflow. In 
any workflow diagram, the number and particular order of tasks will vary by 
the type of sensor, type of software, analyst experience, and desired product. 
Thus, some workflow charts will necessarily be either more or less complex.

The workflow in Figure 3.9 is divided into three major tasks: data file 
conversion (C), radiometric correction (R), and geometric correction (G). 
Each step in the process is described below to illustrate the necessary tasks 
associated with each component.

During the first task, data are collected in three streams: dark frame data 
that provide sensor noise information, raw image and associated data (band 
wavelengths and widths), and geolocation data (GPS). The dark frame consists 
of a series of exposures taken with the lens shutter closed. This information 
is used to model the detector chip noise and light energy thresholds. The 
dark data are saved in a separate file. The raw hyperspectral data consists 
of intensity values for each wavelength and pixel, a row and column value 
for relative location, and a time stamp denoting when each image frame was 
collected. The image, band, and GPS data are compiled in a single flat file. 
These file formats are then converted during step C.1 to a format that is com-
patible with the image processing software modules. During this process, 
the data components are extracted and written to separate files. These files 
include the intensity or DN file; a band file (BND), which describes the 
spectral range of the DNs; a navigation file (NAV), which contains the data 
frame acquisition time; and a dark frame, which has noise values relatively 
referenced by row and column.

The second task, radiometric correction, involves various steps to model 
sensor noise, atmospheric conditions, and illumination effects. A number of 
correction factors are applied as shown in the workflow diagram. Although 
much of this effort is standardized, the person processing the data will 
decide which procedures and implementations are most suitable to use for 
each application.

Finally, during the third task, geometric correction is used to address 
issues of geolocation in both the interim and final image products. The 
procedure depicted in Figure 3.9 uses airborne GPS and IMU data to achieve 
geolocation. This data is supplemented by boresight information (atti-
tude and orientation) derived from a “patch test,” GPS and sensor timing 
synchronization (timing latency), and georeferencing to digital orthophotos 
collected simultaneously with the hyperspectral data.

The workflow described in Figure 3.9 is highly interactive. In addition, 
all data must be processed to level G.6 (create data tiles) before analysis 
can begin. The implementation of this workflow was chosen to minimize 
redundancy in the processing steps, which have to be followed in sequence 
to assure an accurate, high-quality product. For example, the crosstrack 
(R.3: xtrack) correction removes the differential illumination effect of the sun 
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angle for each flightline. This procedure requires that the entire flightline 
(or run) be processed to reflectance before it can be applied. If only a portion 
of the run were used, the correction coefficients would yield a nonstandard 
result, leading to confusion and error in feature classification based on the 
spectral signature.

Standard Products

Standard products resulting from an airborne data collection include the 
following:

Runs
Mosaics
Cubes
Boundary map
Flightline map
Cube index map
Flight log
Metadata
Summary report

As described earlier in this chapter, airborne hyperspectral scanners are pre-
dominately either pushbroom or whiskbroom in design. Therefore, image 
data is collected in continuous strips along the flight direction, known as 
“runs.” Run file size is dependent on the length of each flightline, which is 
a function of the spatial extents of the area of interest and the orientation of 
the flightlines within this area. Runs are commonly combined into a mosaic, 
allowing for a visual overview of the entire area of interest, or for a specific 
area or feature to be located. Once again, due to large file size limitations, the 
native resolution of the runs is often reduced when producing mosaics.

Runs are efficient objects for data collection and preprocessing but usually 
impractical for analysis due to their large file size. Consequently, once pre-
processing is completed (e.g., radiometric and geometric correction), runs 
are subset into segments of a standard size to facilitate manipulation and 
analysis. These segments are known as “cubes” because they are defined by 
x and y coordinates in the spatial dimension and spectral measurements in 
the z dimension.

The three map layers—boundary map, flightline map, and cube index map—
define the spatial extents of the area of interest, the actual flightlines flown as 
determined in the mission planning phase, and an index map delineating the 
location of each image segment or cube. These map layers are typically digital 
in CAD (dxf, dwg, or dgn file extensions) and/or GIS (Geographic Information 
System) software (shp or map file extensions) formats.

The mission flight log is an invaluable source of useful information, aiding 
in processing and analyzing data, as well as providing the basis for project 
metadata. Log formats vary, but at a minimum should include standard, 
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mission-specific, and flightline information. Standard information items are 
date, time of flight, aircraft, pilot, operator, and equipment (including model 
and serial number). Mission-specific information includes airport name and 
identifier, elevation, air temperature, wind speed, and cloud cover. Flight-
line information records flight direction, airspeed, altitude (above ground 
level), flightline number, integration time, and operator notes (e.g., changes 
in sensor settings, atmospheric conditions, and data collection issues).

Finally, the airborne data collection includes a summary report that high-
lights the significant findings and conclusions of the mission.

Reference
Mostafa, M., J. Hutton, and B. Reid. 2001. GPS/IMU products—the Applanix 

approach, In: Fritsch/Spiller (eds.), Photogrammetric Week 2001, Wichmann 
Verlag, Heidelberg, Germany, pp. 63–83.
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4

Hyperspectral Remote Sensing 
and the Atmosphere

Atmospheric Interactions
Because hyperspectral data is collected some distance above the target on the 
ground, the reflected solar illumination must travel through the atmosphere. 
Characteristics of the atmosphere can have a profound effect on the incom-
ing solar energy recorded by the hyperspectral sensor. The way light inter-
acts with the atmosphere depends on many factors: the types of particulates 
and gases, the amount of atmospheric reflection, atmospheric absorption, and 
atmospheric scattering. The atmosphere is a complex mixture of particulates 
and gases. Particulates are small particles usually less than 20 μm in diameter. 
Particulates greater than 20 μm are not likely to stay in the atmosphere for 
long durations and tend to settle to the ground rather quickly.

Amount of Atmospheric Reflection

Specular reflection is the perfect mirrorlike reflection of light off a smooth 
surface at the corresponding angle of incidence (Figure 4.1).

Amount of Atmospheric Absorption

Atmospheric absorption is the removal of energy from solar irradiance by 
conversion of the electromagnetic energy to another form, usually thermal 
energy. Atmospheric absorption occurs when a photon induces a molecular 
vibration, rotation, or electron orbital transition to an alternate energy state. 
The photon is absorbed by the constituent molecules of the atmosphere, and 
only photons with specific energy levels can be absorbed.

a b

a = b

Figure 4.1  Basic reflectance off a smooth surface.
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Molecular Absorption

Molecules can absorb electromagnetic radiation in three ways: electronic 
transitions, vibration, and rotation. Electronic transition requires the greatest 
amount of energy and involves the promotion of electrons to higher energy 
levels. Vibration involves the molecular bond between atoms and models it 
as a spring. Rotation can be considered in the context of a simple diatomic 
molecule of two atoms. The two atoms can rotate about their center of mass. 
Molecular absorption can be complicated by a combination of mechanisms 
occurring simultaneously. For example, the energy level of a molecule can 
be described by both rotation and vibration. Table 4.1 summarizes the main 
absorption lines in the Earth’s atmosphere (Rees, 2001).

Amount of Atmospheric Scattering

The surface area of the particulate and gases interacts with the light and 
creates scattering or a redirection of the electromagnetic radiation (EMR), 
which can cause a change in the distribution of the EMR. The interaction 

Table 4.1  Principal Molecular Absorption Lines in the 
Earth Atmosphere 

Wavelength 
(μm) Molecule

Wavelength 
(μm) Molecule

0.26 O3 3.9 N2O

0.60 O3 4.3 CO2

0.69 O2 4.5 N2O

0.72 H2O 4.8 O3

0.76 O2 4.9 CO2

0.82 H2O 6.0 H2O

0.93 H2O 6.6 H2O

1.12 H2O 7.7 N2O

1.25 O2 7.7 CH4

1.37 H2O 9.4 CO2

1.85 H2O 9.6 O3

1.95 CO2 10.4 CO2

2.0 CO2 13.7 O3

2.1 CO2 14.3 O3

2.6 H2O 15 CO2

2.7 CO2

Source:	 Rees, W.G., Physical Principles of Remote Sensing, 2nd ed., 
Cambridge University Press, 2001. With permission.
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of the light with the particulate or atmospheric gases that do not change 
the properties of the light is called “elastic scattering.” The dynamics of the 
scattering are based on the particulate or gas surface geometry and char-
acteristics. Atmospheric scattering results in fewer photons reaching the 
collection optic sensors and fewer photons available for the sensors on the 
focal plane array or other detector elements.

Chandrasekhar (1960) and Van de Hulst (1981) present a treatment of the 
complex details of scattering theory and the related radiation propagation 
(Schott, 1997). The three basic types of scattering are classified as Rayleigh, 
Mie, and non-selective scattering. Rayleigh scattering occurs when the 
EMR interacts with the minute particles or molecules that are the compo-
nents of the atmosphere, primarily when the particles are much smaller 
than the wavelength of the incident flux. Mie scattering results when the 
wavelength of the incident EMR is approximately equal to the size of atmo-
spheric particles, such as aerosols, dust particles, fossil fuel combustion 
products, and suspended sea salts. Nonselective scattering occurs when the 
suspended atmospheric particles are very large with respect to the incident 
EMR; particles such as water droplets and ice crystals can cause nonselective 
scattering (Schott, 1997).

Rayleigh Scattering
In attempting to explain the blue color of the sky, Lord Rayleigh (1871) first 
described the phenomenon of scattering. He characterized the fractional 
amount of energy scattered into a solid angle at an angle θ from the propaga-
tion direction per unit length of transit in the medium. Rayleigh scattering 
involves an inverse dependence with wavelength to the fourth power and an 
inverse dependence on number density.

Rayleigh scattering, which generally occurs at high altitudes in the upper 
atmosphere, is also referred to as clear air scattering because of the minor 
amounts of particulates that are available for scattering. The primary com-
ponents for the scattering at these altitudes are atmospheric gases including 
oxygen and nitrogen. Rayleigh scattering is dependent on the wavelength 
of the light, and the scattering increases as the wavelength becomes shorter. 
Another property of Rayleigh scattering is that the particles have a smaller 
diameter than that of the incident light wavelength.

The size of a Rayleigh scattering particle is defined as:

	
x

r= 2π
λ

where x is the size of the particle, which is much less than the incident 
light wavelength.
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The wavelength dependence explains how the sky is blue because more 
short wavelength energy is scattered from the incoming solar flux. Similarly, 
the sky is red at sunrise and sunset because the remaining solar flux will 
contain proportionately greater amounts of longer wavelengths as the shorter 
wavelengths are removed by scattering (Schott, 1997).

Mie Scattering
When you look at the sky, it looks bluer the farther you look from the sun. 
The almost white scattering near the sun can be attributed to Mie scattering, 
which is the second basic type of scattering. Mie scattering occurs closer to 
the ground and up to altitudes of 3 miles (5 km). Mie scattering is caused by 
the interaction of light with larger particulates such as dust, pollen, smoke, 
and water droplets. The particulates generally have a diameter equal to the 
incident light wavelength. The interaction is not as wavelength dependent as 
Rayleigh scattering, and the primary impact is to light in the visible portion 
of the spectrum.

As shown in Figure 4.2, Mie scattering is mostly forward scattered, unlike 
Rayleigh scattering, which is symmetric with approximately equal amounts 
of forward and backscatter. Also, Mie scattering is not as dependent on 
wavelength as Rayleigh scattering.

Nonselective Scattering
The third basic type of scattering is nonselective scattering, which occurs at 
the levels closest to the ground where the particles are usually much larger 
in diameter than the wavelength of the incident light. Nonselective scatter-
ing does not depend on the wavelength and the scattering occurs uniformly 
in all directions. This type of scattering usually involves large dust particles, 

Mie Scattering

Rayleigh
Scattering

Mie Scattering

Rayleigh
Scattering

Figure 4.2  Basic principles of Rayleigh and Mie scattering.
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water droplets, ice, and hail, and is the primary factor in the haze experienced 
in urban environments.

Figure 4.3 shows the optical thickness as a result of the scattering and 
absorption of electromagnetic radiation propagating vertically through 
the atmosphere. Figure 4.3 is based on “standard” atmospheric conditions 
and only shows general spectral detail. The near-IR region shows the many 
absorption features related to molecular transitions. Since Figure 4.3 assumes 
vertically incoming electromagnetic radiation, an oblique path would result 
in greater optical thickness (Rees, 2001).

Atmospheric Transmission
Figure 4.4 shows atmospheric transmission as a function of wavelength for 
a standard atmosphere. This figure also shows the solar exoatmospheric 
spectral irradiance in wm–2μm–1, and the radiant exitance from a 300 K 
blackbody (wm–2μm–1). There are several orders of magnitude more flux from 
the sun than the emittance from the 300 K blackbody for the visible through 
the short-wave infrared.

Atmospheric constituents have unique spectral absorption characteristics 
and affect the incoming solar irradiance. Figure 4.5 shows the absorption 
spectra of various atmospheric constituents for a single pass through the 
U.S. standard atmosphere for a 45-degree solar illumination path. The bottom 
curve in Figure 4.5 shows the actual atmospheric transmission as a result of 
combining the individual spectra for each of the atmospheric constituents. 
Figure 4.6 shows the exoatmospheric spectral irradiance combined with the 
atmospheric transmission spectra (Schott, 1997).

a
O3

O2

O2

O2

H2O
H2O

CH4

H2OCO2

CO2

CO2

CO2 CO2

N2O

N2O

H2O O3

H2O

H2O
H2O10

1

0.1

0.01

Rayleigh

0.2 0.5 1.0 2 5 10 20
Wavelength (µm)

O
pt

ic
al

 Th
ic

kn
es

s

Figure 4.3  Total zenith optical thickness of the standard atmosphere for the ultra-
violet, optical, and infrared region (modified from Rees, 2001).
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Figure 4.5  Absorption spectra of various atmospheric constituents and overall 
atmospheric transmission as derived from MODTAN (Schott, 1997).
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Solar Irradiance Esλ = Esλτ( λ)

Wavelength (µm)

Exoatmospheric Solar Irradiance Esλ(λ)
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0
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Figure 4.6  Effect of atmospheric transmission on the solar spectral irradiance 
reaching the earth (Schott, 1997).
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Information Extraction from 
Optical Image Data

Data vs. Information
Data are a collection of observations, or raw, unprocessed values or sets of 
values. Information is data within a given context. Without the context, the 
data are usually meaningless, as depicted in Table 5.1.

Once you put the information into meaningful context, you can use it to 
make decisions. The transfer of information to the person who needs it, such 
as a data analyst or policy maker, can increase the ability of that person to 
make better decisions. A data value may contain information in a specific 
context. For example, when you want to calculate blackbody radiation, 
Planck’s constant is the information you need to derive the answer. Other-
wise, that number is just one data element in the world of physics.

The development of computers has made it possible to process large 
amounts of data into information. Even the fastest computers, however, have 
difficulty processing all the data gathered by the larger focal plane arrays that 
are built into hyperspectral systems with greater spectral resolution. One of 
the disadvantages of these hyperspectral sensors is the time it takes to con-
vert collected observations into information that can be used for intelligence, 
knowledge, or decision making.

Probably the most important characteristic of good information is its 
relevance to the problem. Information is usually considered relevant if it helps 
improve the decision-making process. If the information is not specific to 
your problem set, it is irrelevant. For example, information about the mineral 
content of surface soils in Nevada is only useful if you plan on searching for 
minerals in Nevada. Otherwise, the information is not relevant.

Timeliness and accuracy are also strong considerations for the value of the 
information. Timeliness of data or information is directly related to the gap 

Table 5.1  Data vs. Information

Data Value Information

300,000,000 Population of the United States in 2006 census; speed of light 
measured in meters per second

500 Time in seconds it takes for light to travel from the sun to Earth

2π Circumference of a unit circle
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between the occurrence of the event to the transfer of information to the user. 
A system is considered “real time” when the gap between data collection and 
product development (such as target detection) is very short.

Accuracy is the comparison of the data to actual events. Many times, a data 
authentication process is used to determine the validity of the data collected.

In hyperspectral remote sensing, the ability to derive information from 
spectral data is the key to any successful collection. The vast amount of 
spectral data must be culled to define the spectral signature of interest 
for the material under consideration. In spectral terms, the pure spectral 
signature of a feature is called an endmember. One method of collecting 
pure endmembers is from a laboratory spectroradiometer that is focused on 
a single surface or material. These signatures are then used in the spectral 
sensor, and detection algorithms are used to define and refine the spectral 
scene collected so a material or materials with similar characteristics can be 
defined. However, when the material of interest is not available for labora-
tory measurements, it must be defined within the spectral scene collected.

Classification Style/Intent
How people visualize data, information, and the world around them is an 
important resource in many areas of analysis, research and development, 
and theoretical studies. Although helpful in evaluating complex tasks and 
designs as well as imagery data, visualization and classification are not 
widely used in routine data analysis in many fields because the software 
with intuitive graphical user interfaces that allows the representation of 
ordinary data sets has not been developed. Classification and visualization 
software requires complex algorithms that are usually not cost effective for 
the evaluation of ordinary tasks and data sets.

An image analyst determines the classification approach and decides 
between using spectral classes or information classes. A cluster of pixels 
with nearly identical spectral characteristics is considered part of a spectral 
class. An analyst uses an information class, such as pine trees, orange trees, 
or gravel, when trying to identify specific items or groups within an image. 
The primary goal of an image analyst is to try to match the spectral class to 
an information class. For example, in Figure 5.1, each set of five pixels has 
been identified as a spectral class. If the analyst knows that this spectral class 
has the characteristics of a pine tree, these spectral classes are assigned to the 
pine tree information class.

Supervised and Unsupervised Classification
Once the analyst has decided to use spectral or information classes, the 
classification process can be either supervised or unsupervised. A super-
vised classification is based on detection algorithms using pixels from known 
reference samples, usually located within a scene, as a basis for comparison 
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to other pixels from objects in the same scene. For example, if the analyst 
knows one specific area is a gravel road, then all other areas with the same 
detection algorithm will also be a gravel road. Therefore, in supervised 
classification, the analyst usually starts with known information classes that 
are then used to define representative spectral classes that closely match the 
reference samples.

Unsupervised classification is basically the opposite of supervised classi-
fication. Pixels in an image are grouped into spectral classes based solely on 
the information in the data compared to signature libraries or other known 
information classes.

Once the data set is minimized to a size that can be processed and exploited, 
image classification can be used to assign spatial and spectral information into 
various “themes,” commonly referred to as “thematic maps.” These themes 
are used to depict natural items such as soil or other geological features, 
vegetation, water, or man-made objects such as structures or vehicles.

Feature Extraction
Even though current remote sensors and data collection systems often create 
extremely large data sets that are difficult to work with, the information 
contained in these data sets can be valuable. As a result, software has been 
developed to aid with the visualization and classification. One option for 
the image classification process is feature extraction. This option reduces the 
spectral or spatial characteristics with spectral transformations or spatial 
filters so data sets can be easily processed and exploited. Feature extraction 
can also be accomplished by selecting a subset of bands based on the charac-
teristics of certain items of interest.

One method for isolating spectral features is called Spectral Mixture 
Analysis (SMA). SMA is a structured approach that addresses the mixed-pixel 

Spectral Classes

Figure 5.1  Spectral classes.

L1654_C005.indd   41 10/2/07   8:47:54 AM



42	 Hyperspectral Remote Sensing: Principles and Applications

problem and other factors that contribute to the image quality, such as cali-
bration and light conditions. The SMA equation for each band is

	
R F R Eb em em b b

em

Nk

= +
−

∑ ,

1

where Rb is the spectral radiance at band b, Fem is the fraction coefficient of 
each endmember, Rem, and their weight factor at band b, while Eb is the error 
for any other sources of radiance in band b. Each endmember is selected 
based on its distinct material and its contribution to the overall spectral 
scene. This method works best when spectral diversity and content of the 
scene are not complex and the spectral features of interest are very minor in 
the scene.

Other methods of feature extraction include the first difference Partial 
Least Squares (PLS) regression, which uses a Singular Value Decomposition 
(SVD) of the entire spectrum within the scene, and Hierarchical Foreground/
Background Analysis (HFBA), which divides the spectral scene into two 
groups, foreground and background, that contain the spectral signature of 
the feature or features of interest.

Algorithm Development
An algorithm is a step-by-step procedure that terminates after a finite 
number of steps. An algorithm is different from a computer program. An 
algorithm, which can be written in any language, including English, is more 
like the reason for developing the program. The program has to be written in 
a particular programming language, but the steps of the algorithm are what 
perform the task. The steps must be unambiguous so that carrying out the 
steps will accomplish the assigned task.

With all the remote sensors collecting spectral data for government and 
commercial uses, detection algorithms have become crucial for the data to 
be able to be used by consumers throughout the world. Being able to process 
the hyperspectral data is as important as the actual sensor system. Many 
scientists and researchers have worked on developing and implementing 
robust detection and identification algorithms that will make the hyper
spectral data useful for both commercial and military markets.

Most detection algorithms require access to the spectral attributes in a 
spectral signature library. Spectral libraries contain reference spectra either 
measured or simulated from field and laboratory collections of reflectance or 
radiance data. After pixel spectra are collected, the new spectra are compared 
to the pixel spectra in the spectral library for detection and identification.

Spectral analysis methods usually use image analysis algorithms to compare 
pixel spectra with a reference spectrum (often called a “target  spectrum” 
or “endmember”). The most commonly used algorithms for hyperspectral 
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and multispectral image processing are whole-pixel analysis, spectral angle 
mapper (SAM), spectral feature fitting, sub-pixel analysis, complete linear 
spectral unmixing, and matched filtering. These algorithms are included in 
commercially available visualization software packages such as Environment 
for Visualizing Images (ENVI™) from ITT and Earth Resources Data Analysis 
System (ERDAS) developed by Leica.

Whole-Pixel Analysis

The whole-pixel analysis method is used to determine if one or more target 
materials are abundant within each pixel. The spectral similarity of the 
target pixel is then compared with materials in a reference library. Whole-
pixel analysis is often used against standard supervised classifiers or the 
SAM and spectral feature fitting analysis methods.

Spectral Angle Mapper (SAM)

SAM considers every pixel in the scene and evaluates the similarity of the 
spectra to repress the influence of the shading, which accentuates the char-
acteristics of reflectance. The image spectrum is then assigned a correlation 
factor between 0 (low correlation) and 1 (high correlation) and compared 
to a spectral library or endmember. With SAM, the data are converted to 
apparent reflectance, which is the true reflectance with gain coefficients that 
are defined by terrain and lighting conditions. A scatter plot of pixel values 
from two bands of a spectral image can be generated to visualize the spectral 
components. The plot in Figure 5.2 shows the pixel spectra and target spectra 
as points. Figure 5.3 shows a SAM plot of various materials.

Ba
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angle
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Figure 5.2  Pixel spectra and target spectra as points.

L1654_C005.indd   43 10/2/07   8:47:56 AM



44	 Hyperspectral Remote Sensing: Principles and Applications

The spectral angle is the angle between any two vectors originating from 
a common origin. The magnitude of the angle indicates the similarity or 
dissimilarity of the materials—a smaller angle correlates to a more similar 
spectral signature. This method is relatively insensitive to changes in 
illumination on the target material because changes in light will impact the 
magnitude but not the direction of the vector. A poorly illuminated target 
will cause the points to be plotted closer to the origin (Clark, 1999).

Spectral Feature Fitting (SFF)

Another approach to matching target and pixel spectra is by examining 
specific absorption features in the spectra. SFF is a detection algorithm that 
uses image spectra that are matched to reference endmembers. With SFF, 
the user specifies a range of wavelengths within which a unique absorp-
tion feature exists for the chosen target. The pixel spectra are then compared 
to the target spectrum using two measurements. The first measurement is 
the depth of the feature in the pixel, which is compared to the depth of the 
feature in the target. The second measurement is the shape of the feature in 
the pixel, which is compared to the shape of the feature in the target using a 
least-squares technique.

An advanced example of this method, called Tetracorder, has been devel-
oped by the U.S. Geological Survey (Clark et al., 2003). The U.S. Geological 
Survey, Denver, has been instrumental in the successful implementation 
of variations of the SFF for their applications (Clark, 1999) as illustrated in 
Figure 5.4.

Figure 5.3  Spectral Angle Mapper (SAM) plot of various materials (courtesy of ITT).
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Tetracorder compares reference spectra with unknown spectra after the con-
tinuum has been removed. A continuum is a mathematical function used to 
isolate a particular absorption feature for analysis (Clark and Roush, 1984). The 
reference spectra are selected from a signature library or the collected imagery. 
The reference spectra or endmembers are then adjusted by subtracting the 
continuum-removed spectra. Then the reference spectra are scaled to match 
the unknown spectrum. The greater the scale factor, the less correlation there 
is between the signatures. A statistical analysis of least-squares fit between 
the curves is then performed, which results in a root means square that can be 
used to further correlate the statistical significance of the spectral match.

Sub-Pixel Analysis

The sub-pixel analysis method is a very powerful detection algorithm that 
can be used to calculate the quantity of target materials in each pixel of an 
image. Sub-pixel analysis can detect quantities of a target that are much 
smaller than the pixel size itself. In cases of good spectral contrast between 
a target and its background, sub-pixel analysis has detected targets covering 
as little as 13% of the pixel.

The more contrast the spectra have, the better these algorithms are in discrim-
inating the spectral signature. Targets that fill several pixels also have greater 
statistical significance for an increased probability of detection. However, when 
the object of interest is significantly small, these algorithms can lead to initial 
detection and the possibility of further identification. The disadvantage of sub-
pixel analysis is the number of false detections that occur when precise spectral 
measurements are attempted with a limited amount of information.

Complete Linear Spectral Unmixing

Complete linear spectral unmixing is a method for performing sub-pixel 
detection based on the theory that each pixel contains a linear combination 
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Figure 5.4  SFF analysis with and without continuum (left) and application to min-
eral detection and identification (right) (Clark, 1999, courtesy of USGS).
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of reflectance spectra from all the endmembers within the pixel (Adams 
et al., 1986). If the relationship is linear, then the more spectral content there 
is, the greater the amount of that material is contained within the pixel. This 
relationship can be used to calculate the content of the material within the 
scene based on the spectral signature of the endmember sought. The spectral 
unmixing is achieved by a set of linear equations based on the number of 
bands in the image. The unknown quantity is solved to determine the fraction 
of each endmember in the pixel. The more endmembers there are, the more 
bands that must be used to unmix the spectral signatures. See Chapter 6 for 
a detailed explanation of unmixing.

Matched Filtering

Along with complete linear spectral unmixing, matched filtering is another 
method for performing sub-pixel detection. Matched filtering is a special-
ized methodology for spectral unmixing that only uses specifically defined 
endmembers for the spectral maps. This varies from the complete linear 
unmixing routine, which requires all endmembers in the pixel to be defined. 
This method is commonly referred to as partial unmixing.

Matched filters are used to find spectral signatures for materials that con-
stitute a relatively minor portion of the spectral content within the image. 
Matched filtering got its name because it filters the spectral scene to provide 
good matches to the endmember of interest and suppresses all other signa-
tures. All other signatures are considered background.

This technique requires significantly less computational analysis and, 
therefore, can provide a rapid means to analyze, display, and exploit the 
imagery. As with other linear unmixing methodologies, false detections can 
be present in the final data. ENVI uses a tool to calculate how feasible the 
solution is based on noise and other image statistics to determine the correla-
tion between the matched filtering result and what would be expected from 
a mixture of the target and the background under those conditions.

Match filtering was used on airborne hyperspectral imagery immediately 
following the Space Shuttle Columbia tragedy in Texas on February 1, 2003. 
It was critical to find as many space shuttle fragments as possible before the 
material degraded due to exposure to environmental elements.

As a result, space shuttle fragments as small as 10 sq. in. were detected 
using remote hyperspectral sensing and match filtering algorithms. These 
fragments proved critical for the space shuttle recovery effort and crash 
investigation, and demonstrated the value of remote hyperspectral sensing 
under time-sensitive conditions.

Information Contained in an Image
Spectral data is essentially high-resolution imagery that contains spatial and 
spectral information. Due to the quality of the GSD (ground-sampled distance) 
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of many hyperspectral systems, single-band data is digital imagery that is 
geospatially registered. That means that every pixel has an associated x, y 
coordinate that is usually resolved from an inertial navigation system (INS), 
with adjustments for aircraft roll, pitch, and yaw.

The strength of hyperspectral imagery is the number of contiguous bands 
used to compile each scene. The reflected light from the surface interacts 
in a unique way for soil, vegetation, and water, and even slight variations 
of those materials are quantified and characterized through hyperspectral 
imagery (Figure 5.5).

The reflected light used by hyperspectral sensors is governed by the laws 
of physics. To maintain thermodynamic equilibrium, the sun does not lose 
gain of energy as it interacts with the vacuum of space, the atmosphere, and 
the Earth’s surface. The sun accounts for most of the solar energy, which is 
mainly concentrated between 0.4 to 3.0 µm (Arya, 2001).

The fraction of solar energy that is reflected back into the atmosphere is 
called “albedo.” When an object reflects most of the light that hits it, it looks 
bright and it has a high albedo. When an object absorbs most of the light that 
hits it, it looks dark and has a low albedo. The albedo of a perfectly white 
object is 1; the albedo of a perfectly black object is 0.

The albedo value depends on the interaction of the surface areas of reflec-
tive materials. Reflectance is usually considered from a single incidence angle 
because light usually reflects off the surface of an object at the same angle 
as the incident light. Surface geometry can change a portion of the incident 
light. Albedo takes into consideration reflectance at all angles and can be 
ascribed to the bidirectional reflectance distribution function (BRDF).

Most albedo values are derived from laboratory measurements because 
they are dependent on the portion of the electromagnetic spectrum under 
consideration from remote sensing. The mass median diameter (MMD) and 
other estimates of grain size and shape are commonly used for BRDF models. 
But as expected, estimations and simplifications can lead to a discrepancy in 
simulated and measured data.

Soil

Veg

Water

Figure 5.5  Interaction of reflected light with surface materials.
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The interaction of light as it reflects off a surface creates a spectral response 
that is detected by the sensor and then analyzed by detection algorithms. 
Any surface that is in the field of view of the sensor that does not have black-
body characteristics will reflect light in a wavelength that is captured by 
the remote sensor. Depending on the diffraction optics and notched filters 
(sometimes called band filters), the spectral signatures will be resolved as 
spectral bands.

In many applications, the objective of hyperspectral image analysis is 
to detect and identify objects, which requires a high degree of confidence. 
Increasing the number of hyperspectral bands, however, does not neces-
sarily lead to more accurate identification. So even though the vast amount 
of information is contained within the spectral signature, the selection of 
bands to extract the required information is critical. The use of too many 
bands can have a “diminishing returns” effect or even a negative impact on 
the ability to exploit the spectral scene. Because considering all the possible 
sets of bands for a single evaluation would be extremely time consuming, 
analytical methods were developed to aid with band selection (Price, 1994).

Concept of a Hyperspectral Cube
A spectral cube is a three-dimensional array containing spatial (image) 
information on the x and y axes and spectral information on the z axis 
(Figure 5.6). Individual spectra, spectral maps, and full spectral cubes can 
be created from a single spectral cube. Spectral cubes display different 
stratified, graphical thicknesses in a three-dimensional perspective that 
can be a useful tool for overall image analysis. The magnitude of the 
spectral  signature is created by mapping a color to the intensity of the 
spectral response at different wavelengths at a given spatial area. Because 
spectral cubes are generally created over larger areas than the focal plane 
array can collect in one frame, the second dimension of the spatial image is 

Spectral reflectance, R, for
single pixel over the
wavelength region

Wavelength

R

Temporal
AxisSpatial Axis

Spectral
Axis

Figure 5.6  Spectral cube and the fundamental components.
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created over time. This visualizing method is a way to note specific spectral 
characteristics within the scene.

The hyperspectral cube, or hypercube, is a dynamic and powerful method 
to visualize data in terms of the spatial and spectral features that otherwise 
cannot be displayed in a single format. Using the hypercube as an analytical 
tool is often the first step in data analysis and exploitation. Hypercubes are 
automatically generated through many commercially available hyperspectral 
analysis software packages (Figure 5.7 and Figure 5.8).

The amount of data required to generate hyperspectral data cubes 
increases as the spectral and spatial dimensions decrease. Because the ability 
to handle these large files can be a problem, image compression is usually 

x

z

y

Figure 5.7  A typical image cube generated by a hyperspectral imager, with two 
spatial dimensions x and y, and one spectral dimension z.

801729655600581562543505
Wavelength (nm)

Figure 5.8  A hyperspectral cube obtained from imaging a grain of pollen. Multiple 
wavelength images are shown together with corresponding slices of spectral infor-
mation. The data set is 128 × 128 × 1044 measurements (from P&P Optica, Inc.).
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considered. However “lossless” compression does not exist. The criticality of 
the data determines whether or not image compression can be used.

Pattern Recognition
The data from hyperspectral images can be used to collect surface spectral 
signatures to detect, identify, and classify materials within the scene 
(Figure 5.9). Pattern recognition methods are valuable tools for monitoring 
surface features, but the quality of the pattern recognition classifiers is 
commonly based on the quality of the training data sets that are used to 
create the pattern maps. The cost associated with collecting a representa-
tive and validated training set, the number of spectral bands available from 
most sensors, and illumination conditions against the reflective surface and 
terrain can lead to uncertainties in hyperspectral pattern recognition.

The selection of the proper bands to perform hyperspectral pattern rec-
ognition is extremely important. To perform the proper classification, many 
detection algorithms require a high level of statistical correlation. Hyper
spectral data has many bands, which makes statistical significance diffi-
cult when the entire spectrum is considered. Unlike optical image pattern 
recognition where spatial resolution leads to better geometric shape fitting 
and target recognition, the primary component of spectral pattern recognition 
is the spectral response at a given wavelength. Spectral pattern recognition 
also uses spatial data for pattern recognition.

High spectral resolution can be used to trigger spatial pattern recognition 
algorithms. Many objects of interest consist of less than ten spatial pixels, 
so the sub-pixel detection algorithms are used because these algorithms 
increase the probability of detection for objects this small. The spectral data 
correlation to the target endmember provides the catalyst for automated 
target recognition because the object will often have symmetry or features 
that have been previously catalogued.

Figure 5.9  Hyperspectral pattern recognition of building features (Huertas et al., 
1999).
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The development of spectral pattern recognition software is highly com-
petitive among the academic and commercial sectors, and the software is 
generally tailored for specific applications.

Software Tools
Many software tools are available for the preparation and exploitation of 
hyperspectral data. Two common, commercially available analytical soft-
ware tools are ENVI™ and ERDAS.

ENVI is a software tool that is used to analyze and display multispectral, 
hyperspectral, or radar remote sensing data. ENVI has no limits on file size or 
number of bands that can be analyzed during any given processing session. 
ENVI is used to process data such as LANDSAT, SPOT, and RADARSAT, 
while also accepting data from EarthWatch, ORBIMAGE, and Space Imaging. 
Figure 5.10 shows a user interface and sample imagery window from ENVI.

ENVI has tools to extract spectra, reference spectral libraries, and analyze 
high spectral resolution image datasets from many different sensors. ENVI is 
written entirely in Interactive Data Language (IDL), which is an array-based 
language that provides integrated image processing and display capabilities.

ERDAS from Leica Geosystems GIS and Mapping, LLC and the correspond-
ing spectral analysis tool IMAGINE® contain algorithms and other industry-
recognized preprocessing techniques for hyperspectral data analysis. ERDAS 
also processes information from many sensor systems including AVIRIS and 
Hyperion. ERDAS creates material mapping information from the spectral 
data with minimal user interaction. Figure 5.11 shows a user interface and 
sample imagery window from ERDAS.

Figure 5.10  ENVI user interface and sample imagery (courtesy of ITT).
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The U.S. government has also developed a special purpose remote sensing 
analytical software package called COMET for the analysis of synthetic 
aperture radar, multispectral and hyperspectral, overhead non-imaging, and 
other sources of geospatial and electromagnetic spectrum data. This soft-
ware is not available for use by the general public.

Before the hyperspectral data can be processed, the data must be normal-
ized for the effects of atmospheric transmission. The U.S. Air Force collabo-
rated with industry to develop the MODerate spectral resolution atmospheric 
TRANsmittance (MODTRAN) algorithm. MODTRAN calculates atmospheric 
transmittance and radiance. MODTRAN incorporates most of the capabilities 
of LOWTRAN, which is a computer code that is widely used to calculate 
atmospheric transmittance and/or radiance in the infrared, visible, and near 
ultraviolet spectral regions. MODTRAN can calculate spherical refractive 
geometry, solar and lunar source functions, scattering (Rayleigh, Mie, single, 
and multiple), and default profiles (gases, aerosols, clouds, fogs, and rain).

The Air Force also sponsored the development of the HIgh-resolution 
TRANsmission (HITRAN) molecular absorption database. HITRAN is a 
spectral database with computational code used to predict the transmission 
and emission of light in the atmosphere. HITRAN currently contains over 
1,700,000 spectral lines for 37 different molecules.

ATmospheric CORrection (ATCOR), which was developed for use in ERDAS, 
takes into consideration terrain and illumination conditions and attempts 
to present a more realistic response of the spectral signal as it reflects off 
surfaces. ATCOR significantly reduces atmospheric and illumination effects 
in spectral imagery.

Figure 5.11  ERDAS Imagine user interface and sample imagery (courtesy of Leica 
Geosystems GIS and Mapping, LLC).
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Another atmospheric correction software package is Atmospheric 
CORrection Now (ACORN), which provides an atmospheric correction 
of spectral data from 350 to 2,500 nm. ACORN uses look-up tables calcu-
lated with the MODTRAN 4 radiative transfer code to model atmospheric 
gas absorption, as well as molecular and aerosol scattering effects. These 
modeled atmospheric characteristics are used to convert the calibrated sensor 
radiance measurements to apparent surface reflectance. The technique uses 
a fast and accurate look-up table to calculate water vapor amounts on a 
pixel-by-pixel basis. The user can choose to use the water vapor absorption 
bands at 940 nm, 1,150 nm, or both for water vapor derivations. The user can 
also input a visibility parameter or ask ACORN to estimate the visibility from 
the data. A set of sophisticated artifact suppression options are included in 
the ACORN software.

HATCH (High-Accuracy Atmosphere Correction for Hyperspectral data) 
is also used for specific atmospheric applications. Because HATCH specifi-
cally targets the atmospheric radiative transfer problems in visible and short 
wave infrared (SWIR) regions only, a radiative transfer algorithm is used 
rather than the general purpose atmospheric transmission code MODTRAN, 
which speeds up the data processing (Berk et al., 1989). HATCH allows the 
user to define the mixture of aerosols for a more accurate account of the 
losses associated with atmospheric transmission.

MATLAB® is a computer language used to develop algorithms, interac-
tively analyze data, view data files, and manage projects. MATLAB solves 
technical computing problems faster than traditional programming lan-
guages, such as C, C++, and Fortran, and MATLAB code can be integrated 
with other languages and applications.

MATLAB includes development tools that implement algorithms, includ-
ing the MATLAB Editor, which provides standard editing and debugging 
features, such as setting breakpoints and single stepping; M-Lint Code 
Checker, which analyzes the code and recommends changes to improve its 
performance and maintainability; MATLAB Profiler, which records the time 
spent executing each line of code; and Directory Reports, which scan all the 
files in a directory and report on code efficiency, file differences, file depen-
dencies, and code coverage.

The graphics features that are required to visualize hyperspectral data 
are available in MATLAB. These include 2-D and 3-D plotting functions, 3-D 
volume visualization functions, and tools for interactively creating plots. 
You can customize plots by adding multiple axes, changing line colors and 
markers, adding annotation and legends, and drawing shapes. Figure 5.12 
shows a collection of graphs constructed interactively in MATLAB by 
dragging data sets onto the plot window, creating new subplots, changing 
properties such as colors and fonts, and adding annotation.
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Hyperspectral and 
Ultraspectral Information 
Extraction Approaches

Hyperspace
Most people understand the difference between a two-dimensional and a 
three-dimensional object. A square has two dimensions and a cube has three 
dimensions. Not as commonly understood is a hypercube, which is a cube 
with four dimensions. Just as it would be difficult to visualize a cube from a 
two-dimensional drawing if you had never actually seen a cube, visualizing 
a hypercube is also difficult.

One of the simplest ways to view higher dimensions is by slicing. If you 
slice a cube parallel to its sides, you would see a square, a two-dimensional 
figure. If you slice a hypercube, which is the cubic equivalent in four dimen-
sions, you would see a cube.

Another way to define a hypercube is by its geometric properties. A square 
has a perimeter and an area. The cube, however, is defined geometrically 
by the intersection of six squares, also perpendicular and parallel to each 
other. Now instead of a perimeter, the cube has surface area and volume. 
The hypercube is an intersection of multiple cubes, and instead of surface 
area and volume, the hypercube has hypervolume, which is hard to interpret 
because it is defined as the side length to the fourth power. Hypervolume 
cannot be applied, however, because hypercubes do not exist literally.

Table 6.1 shows that when a new dimension is added, one geometric 
property from the previous dimension is lost and an entirely new property 
is gained (Huq, 2002).

Table 6.1  Geometric Properties for Different Dimensions

Shape No. of Dimensions Geometric Property

Square 1 dimension
2 dimensions

Perimeter
Area

Cube 2 dimensions
3 dimensions

Surface area
Volume

Hypercube 3 dimensions
4 dimensions

Spatial volume
Hypervolume
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Hyperspace is a topological space with a fourth dimension. The elements 
of hyperspace are subsets of another topological space.

With respect to hyperspectral remote sensing, each hyperspectral band 
corresponds to a hyperspace dimension. Data from a 64-band sensor would 
be described by a 64-dimension hyperspace.

The Importance of Endmembers
Chapter 5 discussed how the spectral signatures for endmembers are collected 
and stored. Detection algorithms can analyze a complex mixture of signa-
tures and identify the individual endmembers that make up the signature 
because all endmembers, or reference spectra, of the same object will have 
the same distinct spectral signature. These reference spectra are then stored 
in a spectral library.

For example, when hyperspectral data is collected over a geographical 
area, the spectral signatures for the vegetation, soil, water, and rocks within 
the area will be contained in the collected data. Once the detection algorithms 
unmix all the signatures, the individual reference spectra will identify the 
objects on the ground.

Spectral Libraries
The FBI maintains a database for fingerprints, and anyone who has been 
fingerprinted for any reason might have their fingerprints in his or her file. 
When a specific unknown person needs to be identified, that fingerprint is 
sent to the FBI database and analyzed to find a possible match. If that per-
son’s fingerprint is in the database, then the unknown person is identified.

A spectral library is similar to the fingerprint database except instead of 
containing human fingerprints, the spectral library contains spectral signa-
tures, the “fingerprints” that are unique to materials on the Earth’s surface. 
A specific healthy tree variety, for example, will have the same spectral 
signature as every other healthy tree of that same variety. Over the years, 
researchers have been collecting spectral signatures of known objects and 
cataloguing them in spectral databases or libraries.

After the hyperspectral data from a given scene have been analyzed and 
the spectral signatures of the objects have been identified, these signatures can 
be compared with those in a spectral library and the objects can be identified. 
Image processing software packages include vast spectral libraries, but 
because the spectral signatures for every object in the world have not been 
collected, users often need to add new signatures to facilitate the spectral 
identification process.

Delineation vs. Identification
Reference spectra can be derived from a hyperspectral image and used to 
identify the features of interest within the study area. Once the features of 
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interest have been identified on a large scale, the data can be further analyzed 
to determine the specific location or boundaries of each object. This process 
is called “delineation.”

Pixel Unmixing (Abundances)
The spectral data collected from a geographic area is a linear combination of 
the spectra of all the materials that appear in the image. Performing a least-
squares fit will determine the weighting coefficients for the spectrum for 
each individual material, which gives the best fit to the original spectrum. 
The weighting coefficients are considered to be equal to the abundances of 
the respective materials (Ray, 1994).

Linear and Nonlinear Mixing
A lot of remote sensing analysis has been based on the concept of the Earth 
as spots covered by differently colored paint. When the spots of paint get too 
small, they appear to blend together to form a new color, which is a simple 
mixture of the old colors. For example, if an area is covered by 50% small 
red spots and 50% small green spots, from far away, the surface appears as 
yellow. Different proportions of red and green dots will produce different 
colors. If you know that the surface is covered by red and green dots, the 
proportions of the colors can be calculated based on the color that you see. 
Any light reaching the observer, however, has only illuminated one of the 
colored dots. That is linear mixing.

Nonlinear mixing occurs when light hits more than one of the colored 
dots and the spectra of the materials being observed are twisted into dif-
ferent spectra that do not resemble any of the targets. For nonlinear mixing, 
instead of flat dots, imagine a surface with a lot of small, colored bumps 
that stick out varying distances from the surface. Light would bounce from 
one colored bump to another and then to the observer. Because some of the 
light coming from a green bump bounced off a red bump first, this light 
would have characteristics of both the red and green bumps. However, some 
of the light comes directly from the green bump that only bounced from 
the green bump. If you could see this individual green bump, it would not 
look as green as it should. When the light from all of the bumps reaches the 
observer, the light looks different than when the bumps were simple spots, 
even through the proportion of the area covered by each color is unchanged, 
assuming that there are no shadows.

A second way for nonlinear mixing to happen is if light passes through 
one material and then reflects off another. Imagine a piece of translucent 
plastic with half of the area covered by randomly placed translucent green 
spots placed on top of a red surface. Now light can pass through a green 
spot on the plastic and then reflect off the red below before returning to the 
observer. Once again, the interaction of the light with multiple spots along its 
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path changes the character of the light coming from each spot. Once again, 
the color looks different than it does in the linear case (Ray, 1994).

Change Detection
One of the powerful analytical tools that can be performed with the informa-
tion contained in hyperspectral imagery is change detection. Many times the 
changes are nearly undetectable either because of the slightness of the change 
or more importantly, because the change is outside the visible spectrum of 
the human eye. By using two or more spectral images or data from the same 
geo-location but collected at different times, the spectral change within the 
scene can be assessed (Figure 6.1).

Remote sensing considerations for spectral change detection include the time 
and look angle (the solid angle in which an instrument operates effectively) 
from which the data was collected. Although shading does not change the spec-
tral response, shading does have an impact on the magnitude of the signature, 
which can impact the change detection algorithms. The offset angle of the 
remote sensor data collection can impact the pixel geometry. Near-nadir collec-
tions are best suited for change detection analysis so that shading is minimal.

Algorithms and comparison routines can refine the exploitation by show-
ing only the changed or affected areas. Dithering between two images is also 
commonly used to visually determine changes between different images in 
the sequence.

Spectral Maps
After hyperspectral data are converted into hyperspectral information, 
the result is often displayed in a spectral map. Many types of maps can be 

Figure 6.1  Change detection from Quickbird data between 2002 (left) and 2003 
(right) (Niemeyer and Nussbaum, 2005).
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generated from spectral data including visible, gray scale, false infrared, 
and other false color schemes to assist with data exploitation. Hyperspectral 
mapping applications include agriculture and forestry, mineral and gas 
exploration, pollution control, and national defense.

Although many remote hyperspectral sensing applications are macro
scopic with respect to surface features of the Earth, applications in the 
biomedical fields require positional information on a microscopic level, such 
as images obtained within the human eye for analysis and treatment, as 
shown in Figure 6.2.

More traditional spectral maps include forestry (Figure 6.3) and mineral 
(Figure 6.4) mapping. The quality of the data provided by hyperspectral 
sensors significantly increases the resolution of the boundaries and provides 
the ability to perform spectral matching and change detection. It also 
significantly reduces the amount of time required to collect data from ground-
based collection systems.
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Figure 6.2  Single-band images (570 nm) from hyperspectral data used for mapping 
the optical nerve head and vessels for oxygen breathing (left) and interocular 
pressure (right) (Khoobehi et al., 2004).

Figure 6.3  AVIRIS false-color composite, 27 June 2001, near Mammoth Mountain, 
Sierra Nevadas, with vegetation mapping in green and orange (Maurer, 2002).
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Van Kranendonk, 2000). Visible wavelengths true color (red: 0.6069 mm, green: 0.5615 
mm, blue: 0.4693 mm) image of the hyperspectral dataset (left) (Brown et al., 2005).
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Agricultural Applications
Farmers can order spectral imagery of their fields to determine the status 
of their land and whatever is growing on it. For example, spectral imagery 
can indicate the amount of fertilization required in specific locations that 
are designated with GPS coordinates. Agricultural machinery on the market 
today has the capability to load this information into computers built into 
the machinery and automatically adjust the amount of fertilizer deposited 
based on the information contained in the spectral imagery.

The type of vegetation can also be determined from spectral remote sens-­
ing. Figure 7.1 (Clark et al., 1995) shows the types of plants growing in a field. 
Because stressed vegetation looks different from healthy vegetation, mapped 
remote sensing information can be an indication of plant disease or drought. 
LANDSAT Thematic Mapper™ has been used to determine stress in trees 
caused by salinity in the soil (Dwivedi and Rao, 1992). New, more powerful 
hyperspectral sensors are now being flown over citrus groves in Florida and 
other parts of the Southeast in search of citrus canker, the new plague of the 

San Luis Valley, CO–Vegetation Distribution Map
Field Verification Data U.S. Geological Survey

Alfalfa

Canola

Barley

Potato

Oat Hay

Spinach

?
Nothing Mapped

Figure 7.1  Vegetation distribution map (Clark et al., 1995).
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market that is responsible for the trees being quarantined and destroyed. 
The significance of this contamination was highlighted by reports that indi-­
cate that since 2003, Florida was responsible for producing over 86% of the 
orange juice consumed in the United States (Brown and Brown, 2001).

Case Study 1: Detecting Crop Growth Parameters
Case Study 1 was conducted by Patel et al. (2001) to determine if high-­spectral-
resolution remote sensing data could be used to detect the variation in crop 
growth parameters such as LAI, chlorophyll content, and biomass. The 
researchers looked at the position of the red edge for wheat crops growing 
under different conditions. Then they studied the relationship between the 
crop growth parameters and the inflection wavelength, which was computed 
from the red-edge parameters.

Study Area

Patel et al. (2001) selected a wheat-growing area of Dholka Taluka (admin-­
istrative block) of the Ahmedabad district, Gujarat state that is irrigated by 
the Fatehwadi canal. The wheat crop was sowed in the middle of October and 
harvested in the middle of March. An area of approximately 10 × 2 km was 
selected for the Airborne Imaging Spectrometer (AIS) flight. The researchers 
picked wheat plots with different growth conditions to study the growth 
parameters of the crop.

Data Used

High-spectral-resolution data were acquired on 24 and 26 February 1997 
between 1100 and 1130 hrs from a flight height of 3 km using the AIS. At 
the same time that the spectral data of selected plots were collected in the 
airplane, data were collected from the ground level with a portable Ground 
Truth Radiometer (GTR) developed by the Space Applications Center of 
the Indian Space Research Organization (ISRO). The field of view of the 
radiometer was 15 and the central wavelengths of 10 bands were 490, 565, 
660, 670, 710, 745, 785, 880, 960, and 1,025 nm. The bandwidth of each band 
was 10 nm.

The reflected radiance was measured by holding the radiometer vertically 
approximately 1.5 m above a plot, and measurement of irradiance was made 
using a reference plate coated with barium sulphate. The percent reflectance 
in each band was calculated by taking the ratio of radiance to irradiance.

To measure the LAI, chlorophyll content, and biomass, samples of ten 
randomly selected plants were collected from each plot. The fresh weight 
of these plants was taken and the number of plants per 1 m2 was counted at 
three places within each plot to determine the plant population. Leaf area 
was measured using a leaf area meter (LI COR model LI 300). Leaf area index 
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(LAI) and biomass were calculated using measurements of sample plants 
and plant populations.

Data Analysis

The data of Visalpur village were extracted and converted into a sub image 
of 143 bands. A false color composite (FCC) was prepared using one each 
in green, red, and near-infrared bands and used to identify selected plots. 
Signatures of selected plots were generated in all bands, and mean values of 
digital counts were obtained. Radiometric calibration constants of gain and 
offset for each band, provided along with the raw data, were used to convert 
digital counts into radiance.

Wheat plots at different growth stages, along with bare soil (fallow plot), 
were selected to study spectral characteristics. Figure 7.2 and Figure 7.3 show 
the spectral radiance response of soil and wheat, respectively. Wheat shows 
low radiance in the red region and higher radiance in the near-infrared 
region compared to soil. The absorption dip observed at 760 nm is mainly 
due to absorption by atmospheric oxygen (Bach et al., 1995).

The spectral reflectance of the soil (fallow plot) measured by radiometer 
was assumed to be the same at the altitude of the AIS. Considering soil 
reflectance as reference, irradiance was calculated and further used to calcu-­
late percent reflectance from selected plots. Figure 7.3 shows absorption by 
the photosynthetic active biomass of the crop canopy in the red region near 
670 nm and high reflectance in the near-infrared region above 780 nm.

The position of the red edge is determined by the inflection wavelength, 
which is defined as the wavelength at which the rate of increase of reflec-­
tance is the maximum. The position and shape characteristics of the red 
edge in the visible and near infrared are good indicators of plant parameters. 
Miller et al. (1991) evaluated an inverted Gaussian model for the vegetation 
red-edge reflectance.
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Figure 7.2  Spectral radiance of soil. (Patel et al., 2001.)
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Fitting of inverse Gaussian function to the spectral data in this region 
leads to four parameters that represent the red-edge characteristics (Bach and 
Mauser, 1991). Spectral reflectance curves for vegetation exhibit a consistent 
shape in the red-edge region characterized by relatively broad flat minima in 
the 670 nm region, followed by a sharp increase in reflectance beginning at 
about 685 nm and an asymptotic reflectance plateau reached at wavelengths 
beyond 780 nm. The inverted Gaussian model, which represents the red edge 
by the reflectance, is:

	

R R R Rs sλ
λ λ

σ
( ) = − −( ) − −( )
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
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where Rs is the maximum or shoulder spectral reflectance, R0 is the minimum 
spectral reflectance corresponding to the chlorophyll absorption well, λ0 is 
the central minimum or peak absorption wavelength, λ is the wavelength 
in the red and red-infrared region, and σ is the Gaussian function deviation 
parameters. A fifth parameter is λp, the wavelength of inflection of the red 
reflectance edge slope, defined by the wavelength of the maximum in the 
first derivative of the Gaussian function (Miller et al., 1990):

	 λ λ σp = +0

The parameter λp provides another measure of the position of the vegetation 
red reflectance edge.

The standard numerical procedure was used to produce a best fit to the 
reflectance data according to the least-square criterion. The details of the pro-­
cedure are described by Bonham-Carter (1988). For inverted Gaussian model 
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Figure 7.3  Spectral radiance of wheat crop. (Patel et al., 2001.)
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fitting, reflectance data from 650 to 780 nm were used, except data from 750 
to 770 nm wavelengths due to absorption by atmospheric oxygen at 760 nm. 
This model was used for 17 plots of wheat with different growth conditions.

Results and Discussion

The red edge is a phenomenon caused by the combination of the chlorophyll 
absorption in the red region and the scattering by the plant cells in the near-
infrared region of the electromagnetic spectrum. The wavelength position 
of the red edge is a parameter that is sensitive to plant development (Guyot 
et al., 1992).

The spectral reflectance curves of three wheat plots at different growth 
stages: flowering, soft dough, and maturity stages, are shown in Figure 7.4. 
The difference in crop growth is reflected in spectral responses around the 
chlorophyll absorption in the red and near-infrared regions. Separation 
between the spectral response of the wheat plots at different growth stages 
increased in the region of high reflectance from 750 to 880 nm. In the near-
infrared region, maximum reflectance was recorded from plot A, which was 
at the flowering stage, and more chlorophyll content and minimum reflec-­
tance were recorded from plot B, which was at the maturity stage. This trend 
was reversed at the shorter wavelengths, where the wheat plot at flowering 
stage exhibited enhanced absorption. Plot C shows the intermediate values. 
This data indicates the change of reflectance values with crop growth.

The position of the red edge is determined by inflection wavelength, 
which is the wavelength at which the rate of increase of reflectance is the 
maximum. Through Gaussian curve fitting to the reflectance data, the reflec-­
tance wavelength can provide an effective quantitative representation of the 
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Figure 7.4  Spectral reflectance of wheat at different growth stages. (Patel et al., 2001.)

L1654_C007.indd   67 10/31/07   12:10:15 PM



68	 Hyperspectral Remote Sensing: Principles and Applications

shape and position of vegetation red-edge reflectance in terms of physical 
significance (Miller et al., 1991).

The inflection wavelength of selected wheat plots was calculated using an 
inverted Gaussian fit. Figure 7.5 shows the graph for three wheat plots at dif-­
ferent LAIs. Modeling of the red edge shows longest inflection wavelength 
of plot A, with an LAI of 3.16. The reduction in LAI and chlorophyll in the 
senescence phase is reflected in the graph line of plots C and B, with LAIs of 
0.83 and 0.46, respectively. The shift of the inflection wavelength is marked 
in Figure 7.5. The chlorophyll content of plot W1024 was higher compared to 
the other two plots, which indicates that the position of the inflection wave-­
length shifted toward a longer wavelength as the LAI increased.

The researchers made an attempt to derive a relationship between inflec-­
tion wavelength and crop growth parameters. The scatter plot of inflection 
wavelength with LAI and chlorophyll content is shown in Figure 7.6 and 
Figure 7.7, respectively. Regression analysis was carried out and a linear 
relationship was observed between the inflection wavelength and the LAI 
and chlorophyll content. The wheat crop was in the post-heading stage at 
the time of the AIS test flight in the month of February but, along with green 
leaves, dry leaves, and other components, also contributed to the spectral 
response, resulting in low values of correlation coefficients.

Conclusion

This experiment indicates that at least some crop growth parameters can be 
determined using AIS data. In this case study, the inflection wavelength of 
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Figure 7.5  Inverted Gaussian fit of wheat spectra. (Patel et al., 2001.)
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the spectra of wheat shifted from 713 to 723 nm at different growth stages. 
Patel et al. determined this shift by extracting the inflection wavelength of 
the red edge of the reflectance spectra. A linear relation of the inflection 
wavelength with the LAI and chlorophyll content of wheat indicates that 
high-spectral-resolution data can be used to assess crop growth conditions 
and identify stressed crops.
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Figure 7.6  Relationship between inflection wavelength of wheat spectra and LAI. 
(Patel et al., 2001.)
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Figure 7.7  Relationship between inflection wavelength of wheat spectra and chloro
phyll content. (Patel et al., 2001.)
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Case Study 2: Detecting Sugarcane “Orange Rust” Disease
Disease management is important in maintaining the competitive advantage 
of the sugar industry. Pathogens can cause serious damage to sugarcane 
(Saccharum spp.) crops that often lead to reduced crop yield and quality. 
Dealing with this problem involves a variety of curative measures, in which 
disease detection and mapping play a central role. For example, to apply 
chemicals for disease control, the location and spatial extent of the affected 
crops must be first determined.

Thenkabail et al. (2002) worked extensively with narrow-band spectral 
indices to make general assessments of crop conditions. In this case study 
conducted by A. Apan, A. Held, S. Phinn, and J. Markley in 2004, the poten-­
tial of satellite hyperspectral imagery was examined to detect the incidence 
of sugarcane “orange rust” disease. They tested the utility of existing spectral 
vegetation indices (SVIs), developed indices relevant to disease detection, and 
studied relationships between sugarcane orange rust disease and changes to 
the biochemical component of the crop. Their study area covered a portion 
of Mackay’s sugarcane growing region in Queensland, which is the largest 
sugar-producing area in Australia.

The researchers used an image from the Hyperion sensor on EO-1 
acquired on 2 April 2002 and delivered as Level 1B_1 data in scaled radiance 
units. To facilitate the development of indices, these values were converted 
to apparent surface reflectance using ACORN 4.10 software (Analytical 
Imaging and Geophysics, LLC, 2002). Prior to this conversion, the following 
pre-­processing steps were implemented: re-calibration, band selection, 
de-streaking, and repair of “bad” (nonresponsive) pixel values (Apan and 
Held, 2002; Datt et al., 2003).

A minimum noise fraction (MNF) transformation smoothing was applied 
to the post-atmospheric correction reflectance image to minimize uncorre-­
lated spatial noise. The output image was further processed by applying the 
Empirical Flat Field Optimal Reflectance Transformation (EFFORT) polishing 
technique (Boardman, 1998).

Orange rust is a fungal disease in sugarcane that produces orange leaf 
lesions (pustules) usually grouped in patches. The ruptured leaves allow water 
to escape from the plant, leading to moisture stress (Croft et al., 2000). Orange 
rust occurs in summer/autumn and is favored by humid, warm conditions.

In this case study, the infected fields were rated at the canopy level as 
4 based on our 1 to 5 scale (1 having lowest severity to 5 having highest 
severity). Referenced at the time of Hyperion overpass on 2 April 2002, the 
information on the location and severity rating of orange rust was sourced 
from the field offices of the Mackay Sugar cooperative.

Diagnostic symptoms of orange rust in image datasets could be related 
to changes in leaf pigments, internal leaf structure, and moisture content. 
Therefore, SVIs focusing on one or more attributes associated with these 
symptoms were selected. Although the majority of indices were sourced 
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from the literature, five indices were formulated during this case study based 
on the examination of detailed spectral reflectance plots.

Statistical Analysis

Polygons were digitized around the sugarcane blocks affected with the 
orange rust disease, as well as several blocks not affected by the disease, 
to produce 142 and 159 sample pixels, respectively. The nondisease blocks 
contained the same variety (Q124) and age group of sugarcane as the diseased 
blocks. A discriminant function analysis was used to generate discriminant 
functions based on linear combinations of Hyperion band indices that pro-­
vided optimum discrimination between rust-affected and non-rust-affected 
areas (SPSS, 2001). The accuracy of the model was evaulated by classifying 
a “hold-out sample” (i.e., those pixels not included in model generation) 
corresponding to 30% of the total sample pixels.

Results and Discussion

Reflectance spectra of Hyperion “raw” bands showed that sample areas with 
the sugarcane orange rust disease exhibited different spectral reflectance 
signatures and could be discriminated from nondiseased areas at certain 
wavelengths (Figure 7.8). The highest separability was located in the near-
infrared (NIR) region (between 750 to 880 nm and 1,070 nm). This level of 
separability was followed by selected ranges in the short wave infrared 
(SWIR; 1,660 nm and 220 nm), green (550 nm), and red (680 nm) regions. 
Disease-affected areas had relatively lower reflectance values than unaffected 
sites in the green and NIR regions. However, the reverse was true for the red 
and the SWIR domains where areas with orange rust had higher reflectance 
values than areas of sugarcane with no rust.

The results of the discriminant function analysis indicate the following:

The 1,600 nm (SWIR) band, if combined by ratioing with either NIR 
band (800 nm) or green band (550 nm), produced the best results (i.e., 
the largest correlation with the discriminant function and the highest 
classification accuracy) among the indices. This was the case for the 
four highest ranked indices (DWSI-1, DSWI-2, DSWI-5, and MSI).
The indices that only incorporated selected bands in the very near 
infrared (VNIR) (e.g., Ave (750–850, SIPI, DSWI-4, ND800/600, OSAVI, 
TCARI, PSSRa) performed moderately.
The indices developed from the reflectance red edge (69–720 nm) (e.g., 
REIP-Lagr and REIP-poly) were relatively poor in discriminating 
diseased from nondiseased sugarcane crops. They produced very small 
correlations with the discriminant function, and their classification 
accuracies were among the lowest.

•

•

•
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Figure 7.8  Reflectance spectra of Hyperion sample pixels containing sugarcane 
orange rust disease and without orange rust disease: (a) mean and standard devia-­
tions and (b) difference of means. (Apan et al., 2004.)
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The output discriminant function, a linear combination of DSWI-2, 
SR695/420 and NDWI-Hyp, attained a classification accuracy of 96.9% 
for the hold-out sample pixels.

The results of this study showed that if moisture-sensitive bands in the 
SWIR region were incorporated, the spectral discrimination of sugarcane that 
had a moderate to high severity of orange rust disease could be significantly 
increased. The loss of moisture due to lesions or ruptured leaves played an 
important factor in the disease detection (Croft et al., 2000). The high levels of 
discrimination provided by the selected disease–water stress indices devel-­
oped from this case study reinforced this point. However, crops that were 
water-stressed, but not necessarily afflicted with orange rust disease, could 
potentially be differentiated from these indices. Such conditions would 
complicate orange rust detection.

Conclusion

Several narrow-band indices derived from Hyperion image data were able 
to discriminate sugarcane crops that were severely affected by orange rust 
disease from nondiseased areas in the Mackay region of Australia. These 
indices used spectral bands that are known to be sensitive to changes in 
leaf pigments, internal leaf structure, and moisture content. The discrimi-­
nate function analysis allowed the researchers to rank each index based on 
its ability to differentiate rust-affected vs. non rust-affected pixels. Although 
the VNIR-based indices offer significant separability, the incorporation of a 
1,660-nm SWIR band that led to the formulation of the disease–water stress 
indices provided the maximum discrimination.

References
Apan, A., and A. Held. 2002. In-house Workshop on Hyperion Data Processing: Echoing 

the Sugarcane Project Experience, CSIRO Land and Water, Black Mountain 
Laboratories, Canberra.

Apan, A., A. Held, S. Phinn, and J. Markley. 2004. Detecting sugarcane “orange rust” 
disease using EO-1 Hyperion hyperspectral imagery, International Journal of 
Remote Sensing, 25(2), 489–498.

Bach, H., and W. Mauser. 1991. Extraction of agricultural parameters from imaging 
spectrometry data and simulated MERIS data through red edge analyses. Euro-­
pean Imaging Spectroscopy Aircraft Campaign. ESA SP-360 (Noordwijk: ESA).

Bach, H., A. Demircan, and W. Mauser. 1995. The use of AVIRIS data for the determi-­
nation of agricultural plant development and water content. Proceedings of MAC 
Europe ’91—Final Results, ESA WPP-88 (Paris: ESA), Lenggries, Germany.

Boardman, J. W. 1998. Post-ATREM polishing of AVIRIS apparent reflectance data 
using EFFORT: A lesson in accuracy versus precision. In: Summaries of the 
Seventh JPL Airborne Earth Science Workshop, JPL, Pasadena, CA, 1, 53.

•

L1654_C007.indd   73 10/31/07   12:10:19 PM



74	 Hyperspectral Remote Sensing: Principles and Applications

Bonham-Carter, G. F. 1988. The numerical procedures and computer program for 
fitting an inverted Gaussian model to vegetation reflectance data, Geoscience, 
14, 339–356.

Brown, C. A., and M. G. Brown. 2001. Florida Citrus Outlook for 2003–2004 Season. 
Presented to the Florida Citrus Commission, Lakeland, Florida, March 20, 25 pp.

Clark, R. N., T. V. V. King, C. Ager, and G. A. Swayze. 1995. Initial vegetation species 
and senescence/stress mapping in the San Luis Valley, Colorado using imaging 
spectrometer data. Proceedings: Summitville Forum ‘95, H. H. Posey, J. A. Pendelton, 
and D. Van Zyl, Eds., Colorado Geological Survey Special Publication 38, 64–69.

Croft, B., R. Magarey, and P. Whitle. 2000. Disease management. In: Manual of Cane-
growing, edited by M. Hogarth and P. Allsopp, Bureau of Sugar Experiment 
Stations, Brisbane, 263–289.

Datt, B., T. R. McVicar, T. G. Van Niel, D. L. B. Jupp, and J. S. Pearlman. 2003. Pre-­processing 
EO-1 Hyperion hyperspectral data to support the application of agricultural 
indexes, IEEE Transactions on Geoscience and Remote Sensing, 41, 1246–1259.

Dwivedi, R. S., and B. R. M. Rao. 1992. The selection of the best possible TM band 
combination for delineating salt-affected soils, International Journal of Remote 
Sensing, 13, 2051–2058.

Guyot, G., F. Baret, and S. Jacuemoud. 1992. Imaging spectroscopy for vegetation 
studies. In: Fundamentals and Prospective Applications, edited by F. Toselli and 
J. Bodechtel, Kluwer Academic, 145–165.

Kanemasu, E. T., C. L. Niblett, H. Manges, D. Lenhert, and M. A. Newman. 1974. 
Wheat: Its growth and disease severity as deduced from ERTS-1, Remote Sensing 
of Environment, 3, 255–260.

Miller, J. R., E. W. Hare, and J. Wu. 1990. Quantitative characterization of vegeta-­
tion red edge reflectance: An inverted-Gaussian reflectance model, International 
Journal of Remote Sensing, 2, 1755–1773.

Miller, J. R., J. Wu, M. G. Boyer, M. Belanger, and E. W. Hare. 1991. Seasonal patterns in 
leaf reflectance red edge characteristics, International Journal of Remote Sensing, 
12, 1509–1523.

Patel, N. K., C. Patnaik, S. Dutta, A. M. Shekh, and A. J. Dave. 2001. Study of crop 
growth parameters using airborne imaging spectrometer data, International 
Journal of Remote Sensing, 22(12), 2401–2411.

SPSS. 2001. SPSS for Windows (Release 11) (Chicago: SPSS).
Thenkabail, P., R. Smith, and E. Depauw. 2002. Evaluation of narrowband and broad-­

band vegetation indices for determining optimal hyperspectral wavebands 
for agricultural crop characterization, Photogrammetric Engineering and Remote 
Sensing, 68, 607–621.

L1654_C007.indd   74 10/31/07   12:10:20 PM



75

8

Environmental Applications
Hyperspectral remote sensing can be used to study the state of our environ­
ment and track changes that occur over time. This technology has been 
particularly successful in monitoring bodies of water of all sizes from ponds 
to oceans and brooks to rivers. This chapter includes a description of the 
work conducted by researchers for two studies, one dealing with classifying 
the quality of the water in a lake and the other with mapping the location of 
submerged aquatic vegetation.

Case Study 1: Classifying Lake Water Quality
The main advantage of using remote sensing instead of the traditional lake 
monitoring method based on water sample collection is its good spatial and 
temporal coverage. Monitoring can be carried out several times per year, and 
lakes too small or inaccessible to be included in the traditional sampling can 
be also monitored.

Introduction

After studying lakes, rivers, and coastal areas in Finland in 2002, Koponen 
et al. concluded that lake water quality could be classified with airborne imag­
ing spectrometers. At the time of their study, the general water quality was 
periodically assessed by the Finnish Environment Administration. To classify 
the water quality, water samples were collected every four years from stations 
at selected locations. The samples were then analyzed in a laboratory.

Lake classification from samples collected during 1997 included data from 
5,000 sampling stations on lakes that represent 79% of the total lake surface 
area of Finland (including all lakes larger than 1 km2). However, even though 
the collected data set is representative, its usability was limited, especially by 
the spatial variation of water quality in lakes.

Other researchers have discovered that by using remote sensing tech­
niques, some of the important variables used in the operational classification 
of lakes can be measured. These optically active variables include chloro­
phyll a, total suspended solids, turbidity, and Secchi depth (see Dekker, 1993; 
Gitelson et al., 1993; Kallio et al., 2001). Aquatic humus is also an optically 
active substance sometimes used in lake classifications, but its estimation by 
remote sensing techniques in lakes has been proven difficult (Dekker, 1993; 
Kallio et al., 2001).
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In the 2002 Koponen et al. study, the researchers classified the water quality 
using the parameters Secchi depth, turbidity, and chl-a. They obtained the 
class limits from two operational classification standards and discovered 
that using a combination of them was the most suitable when remote sensing 
data is used. Because the classification was possible even without concur­
rent ground truth data, they discovered that operational classification with 
remote sensing data is possible. Their classification accuracy ranged from 
76% to 90%.

The Koponen et al. scientists also investigated the feasibility of using 
remote sensing data for operational lake water classification using regression 
algorithms. In addition, the feasibility of the Medium Resolution Imaging 
Spectrometer (MERIS) instrument onboard the Envisat satellite for water 
quality classification was studied by reconstructing the MERIS channels 
from airborne spectrometer data. They found that the channel configuration 
of the Envisat MERIS instrument also appears to be suitable for the classifi­
cation of turbid lakes, such as Finnish lakes.

Instruments and Data

Koponen et al. measured eleven lakes in southern Finland during the four 
campaigns. The measurements were taken for eight days. The lake selected 
for the measurement campaigns had varying water quality characteristics. 
The trophic status varied from oligotrophic to eutrophic, and two of the lakes 
were humic. For detailed information on the lakes, see Kallio et al. (2001).

The main remote sensing instrument used during the campaigns was the 
AISA (Makisara et al., 1993). The main measurement characteristics of AISA 
are presented in Table 8.1.

AISA has a total number of 286 channels. However, the instrument is not 
able to store data from all channels when the measurement mode suitable 
for airborne remote sensing is used (the amount of data generated exceeds 
the capabilities of the data recorder). Instead, data from a smaller number of 
preselected channels are stored.

Table 8.1  Measurement Characteristics of AISA Airborne Spectrometer

Type Pushbroom CCD-matrix sensor

Number of channels 286

Channel wavelength range 450–900 nm

Channel bandwidth 1.6–9.7 nm (sum of one to six channels)

Number of pixels (across track) 384

Field of view 21°

Pixel size from 1000-m altitude 1 m

Koponen S., J. Pulliainen, K. Kallio, M. Hallikainen. 2002. Remote Sensing of Environ-
ment, 79(1), 51–59. With permission.
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After acquisition, the AISA images were radiometrically and geometri­
cally corrected and resampled to a pixel size of 2 × 2 m by the Finnish Forest 
Research Institute. Additional data preprocessing consisted of deriving the 
average radiance of each AISA channel in a 100 × 100 m square around each 
ground truth sampling point. If the ground truth point was not at the center 
of the measurement swath or if it was close to shore or in a cloudy area, the 
square was moved to the closest suitable location at the center of the swath. 
Averaging reduced the variability of the signal due to the stripes caused by 
the CCD cell and the sun glitter caused by the rough water surface.

The ground truth measurements included water sampling for laboratory 
analysis (e.g., chlorophyll a, turbidity, total suspended solids, aquatic humus), 
on-site measurements (e.g., Secchi depth, upwelling and downwelling 
irradiance with an underwater spectrometer), and weather observations 
(e.g., wind speed and direction, cloudiness). The sum of chlorophyll a and 
phaeophytin a (denoted here with chl-a) was determined with the spectro­
photometer after extraction with hot ethanol (ISO 10260) and turbidity by 
nephelometric method (based on the measurement of light, 860 nm) scattered 
within a 90-degree angle from the beam directed at the water sample (ISO 
7027). In TP determination, the water sample was digested by potassium 
peroxodisulphate before analysis with ammonium molybdate (Murphy and 
Riley, 1962). The total number of points with near-simultaneous AISA and 
ground truth data was 127. Due to partial cloud cover and other problems, 
the number of usable data points was 122.

Methods

Retrieval Algorithms
The retrieval of water quality variables with remote sensing instruments is 
based on analyzing the spectral features of solar radiation reflected from 
the water body. The substances found in natural waters (phytoplankton, 
suspended inorganic material, and dissolved organic matter) scatter and 
absorb the incoming solar radiation. These processes, defined as the Inherent 
Optical Properties (IOP) by Preisendorfer (1976), are wavelength dependent 
and therefore influence the shape and the magnitude of the spectra reflected 
from water. This can be seen in Figure 8.1 where the spectra measured (by 
AISA) at five ground truth data points are presented. By comparing the spectra 
data with the water quality variables, the following features can be observed.

The peak at about 400 nm grows as the concentration of chl-a increases. 
This has been linked to scattering and absorption by phytoplankton (Morel 
and Prieur, 1977), and to chl-a fluorescence, which has a maximum at 683 nm 
(Smith and Baker, 1978). The shift to longer wavelengths as the concentra­
tion of chl-a increases was observed by Gitelson (1992). Just before, the peak 
phytoplankton has an absorption region at about 660–670 nm, although it is 
not as clear as the peak at 700 nm in Figure 8.1.
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Due to scattering from suspended matter, the detected radiance increases 
with the turbidity value in all parts of the spectrum in Figure 8.1. Since 
absorption by optically active substances also influences the radiance level, 
it must be accounted for. One way to do this is to use wavelengths where the 
absorption by optically active substances (e.g., chl-a and colored dissolved 
organic matter) is minimal. One such region is near 710 nm (Dekker, 1993). 
The data show that at that wavelength, the turbidity values follow the radi­
ance values well by decreasing systematically with decreasing radiance.

The use of channel ratios for a relationship between remote sensing 
measurements and ground truth data is very common. The advantage of 
using ratios over absolute values of radiance (or reflectance) is that they correct 
some of the effects of measurement geometry and atmosphere. For example, 
Dekker, Malthus, and Seyhan (1991) showed that channel ratios yield high 
correlation coefficients for several water quality parameters. Dekker (1993) 
and Gitelson et al. (1993) concluded that for the retrieval of chl-a concentra­
tion, a ratio of channels centered at about 675 and 705 nm is useful in several 
lake types (oligotrophic to hypertrophic). In addition, the previous studies 
on partly that same data set as used here (by Kallio et al., 2001; Koponen 
et al., 2001; Pulliainen et al., 2001) have showed that simple channel ratio and 
channel difference algorithms give high coefficients of determination for the 
water quality variables included here.

In this analysis, the best retrieval algorithm for each variable was found 
empirically by deriving a regression model for all possible channels and 
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Figure 8.1  Sample spectra measured by AISA. Y2–Y14 are ground truth data 
points. The channels used in the retrieval algorithms are shown as vertical lines. 
(Koponen S., J. Pulliainen, K. Kallio, M. Hallikainen. 2002. Remote Sensing of Environ-
ment, 79(1), 51–59. With permission.)
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channel ratio and channel difference combinations and selecting the one 
with the highest R2.

Satellite remote sensing instruments can cover much larger areas than 
airborne sensors. Perhaps the most interesting satellite instrument is the 
MERIS on board the Envisat satellite. MERIS has several channels suitable 
for the estimation of water quality variable, and it has a fairly good spatial 
resolution of 300 m (Rast, Bezy, and Bruzzi, 1999). Here, MERIS data are 
simulated by calculating the mean radiance of the AISA channels that are 
within a single MERIS channel. The algorithms were derived by choosing 
the MERIS channels that are the closest to the AISA channels used earlier 
(e.g., 521 nm becomes the channel centered at 510 nm, 700 nm becomes the 
channel centered at 705 nm, and so on). Because it is possible to find MERIS 
channels that are very close to the AISA channels, the resulting regression 
coefficients have about the same values as those derived with AISA data.

Discussion
The airborne water quality classification system was able to classify the target 
lakes with good accuracy despite different measurement configurations and 
lake types. This indicates that remote sensing is a useful tool for water quality 
classification. However, airborne remote sensing is quite expensive and its 
use will be limited to operational monitoring of large areas. Fortunately, the 
simulated Envisat MERIS data also gave good results.

For satellite instruments, atmospheric correction is more important than 
for airborne instruments because the radiance originating from below the 
water surface is very weak compared to the radiance from the atmosphere. 
This may reduce the estimation accuracy when satellite data is used instead 
of airborne data. On the other hand, the measurement conditions (e.g., solar 
angle, weather) will be more constant as the image is acquired in a single 
moment, which should improve the retrieval accuracy. Using retrieval algo­
rithms based on channel ratio or difference indices reduces the effect caused 
by the atmosphere, but some kind of correction may still be necessary. For 
MERIS data, possible atmospheric correction methods are presented by 
Antoine and Morel (1999) and Moore et al. (1999).

The current operative lake classification system used in Finland is based 
on the measurements at fixed stations (laboratory analyses of water samples). 
These stations (or in some cases, just one station per lake) may not always 
present the actual condition of a lake in the best possible way. Perhaps the 
worst flaw of the current classification system is that the spatial resolution is 
limited. With remote sensing instruments, it is possible to see how the values 
of water quality variables are distributed spatially and thus get information 
on the complete status of the lake. Information on the relative spatial varia­
tions of water quality variables is also interesting, even though the absolute 
accuracy is not as good as with laboratory techniques.

The accuracy of a classification system also depends on the number of 
classes the system uses. In this analysis, the number of classes is only five 
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or fewer, and part of the success may be attributed to that. However, in most 
cases, no information at all is available from smaller lakes, so even a coarse 
classification is useful. Furthermore, the experts who generated the operative 
classification systems discussed here have only used at most five classes.

One problem with low- and medium-resolution satellite data (e.g., MERIS) 
is that Finnish lakes are typically small and irregular in shape and may 
include small islands. The radiation reflected from the shore and the vege­
tation near the shore is usually stronger than the radiation from water. 
Therefore, if even a small portion of a pixel is covered by land, the retrieval 
of water quality variables may not be possible. However, the 300-m nadir 
resolution of MERIS should be good enough for large and medium size lakes 
if the rectification accuracy is good.

Case Study 2: Mapping Submerged Aquatic Vegetation
For many years, vegetation patterns have been studied and mapped by scien­
tists and compared with previously mapped areas. As changes in the growth 
pattern become apparent, scientists can study the environmental influences 
that are causing these changes and determine if the changes are having a 
positive, negative, or neutral influence on neighboring ecosystems. Using 
hyperspectral remote sensing to study submerged aquatic vegetation gives 
researchers the chance to study and map larger areas at greater frequencies 
so that more complex and detailed conclusions about the state of the environ­
ment can be made.

Introduction

In 2003, Williams et al. investigated the effectiveness of using high spatial 
resolution hyperspectral remote sensing to map the distribution and abun­
dance of submerged aquatic vegetation (SAV). In the same study, they investi­
gated whether or not SAV could be mapped to the species level using this 
type of data.

SAV species differ in their tolerance to environmental factors. A shift 
in conditions of carbon availability, water clarity, or salinity, for example, 
could selectively affect the abundance of one species more than another. The 
presence, absence, and diversity of emergent and submerged aquatic species 
can be used to assess stream water quality and to rate stream degradation 
(Small et al., 1996).

Before changes in the distribution of species of SAV can be determined, 
however, an adequate species mapping technique must be developed. Once 
the species are mapped, causal relationships can be determined between 
environmental factors and changes in species coverage and distribution. 
Although aerial photographs are very useful for SAV abundance mapping, 
the lack of multispectral information in these photographs makes this data 
inadequate for species determination.
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Williams et al. used hyperspectral imagery to identify and classify SAV 
beds in an aquatic environment that was characterized as optically complex 
given the significant concentrations of suspended solids and chlorophyll. 
The primary absorption band for photosynthesis (680 nm) was detectable in 
the submerged plant canopies. The differentiation of SAV species was done 
by exploiting the way light is scattered or absorbed by physically different 
plant canopies, rather than by some unique biochemical signature.

The data from Williams et al. suggest that the presence of epiphytes and 
sediment coating on the SAV obscure the biochemical reflectance signatures 
of the species. This biophysical methodology might be limited in beds of 
SAV plants with similar canopy profiles or during low tide when the leaves 
of meadow-forming species become horizontal at the surface.

Material and Methods

Study Site
The study area is part of the transition zone between the freshwater tidal 
river and the Chesapeake Bay estuary. The salinity is classified as oligo­
haline (0.5 to 5.0 ppt). SAV species present at this site are primarily Vallisneria 
americana (wild celery) and Myriophyllum spicatum (Eurasian watermilfoil).

Field Spectroscopy
Ground-based in-situ spectra were obtained using an Applied Spectral 
Devices FR portable field spectrometer. Radiance and reflectance data for 
sample plots in Nanjemoy Creek and the Potomac River were obtained on 
13 October 2000, by deploying a fiber-optic sensor head over beds of both 
milfoil and wild celery approximately 1 meter above the water surface. 
Spectra for material having a uniformly high reflecting spectral response 
such as beach sand were used to calibrate the airborne reflectance data for 
quality assurance. Laboratory spectra for field-collected milfoil and attached 
epiphyte colonies were obtained on 9 March 2001. Collected milfoil and wild 
celery, and calibration site spectra were entered into a spectral library data­
base developed in MATLAB.

Hyperspectral Data and Image Processing
Airborne remotely sensed hyperspectral imagery for the site was acquired 
on 21 October 2000, using the HyMap system (Cocks et al., 1998). The flight­
line dimensions were 2.3 × 20 km, and the ground sampling distance (pixel 
size) of the imagery was 4 m. Sensor radiance data were converted to appar­
ent reflectance using ACORN, an atmospheric correction code based on the 
MODTRAN 4 radiative transfer model (ImSpec, LLC). Field sample plots 
were located in the HyMap imagery, and spectral signatures of SAV were 
extracted by averaging over a 50 pixel (200 m2) area of interest for each plot.

A spectral transformation of the reflectance data was accomplished using 
continuum removal to plot the absorption bands at each wavelength. This 
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procedure isolated the absorption band center and allowed these features 
to be easily compared with other reflectance spectra (Clark, 1999; Clark and 
Roush, 1984; Kruse et al., 1993). The depth of the absorption feature at a 
specific wavelength was used to identify the two species of SAV.

The first step in identifying the species of SAV in the imagery was to 
suppress the contributions of the optically active components in the ambient 
water, such as chlorophyll and free-floating algae. These components have 
spectral features that are similar to SAV in certain wavelengths.

Using the spectral signatures of the SAV species and the ambient water, 
a band math algorithm was developed to exploit the spectral differences 
of SAV versus ambient water at critical wavelengths. The algorithm first 
processed out the influence of the ambient water by using the continuum-
removed spectral data. Band differencing was used to set any pixel that did 
not have absorption features associated with SAV to zero. A band ratio using 
two SAV absorption bands was then used to map the SAV beds. Because 
milfoil absorbs more strongly at the 681 nm band than wild celery, the band 
ratio was set up to take advantage of this difference along with another ratio 
for the 590 nm band as follows:

	 (band 1 – band 2) × [(band 1/band 2) + (band 1/band 3)]

where band 1 = 604 nm, band 2 = 590 nm, band 3 = 681 nm.

This equation was used to segment the image and remove potential false 
positives. This preprocessing step also increased the speed of the next proce­
dure by reducing the amount of data to be processed.

Pixels that scored in a set threshold were then passed to a SFF (spectral 
feature futting) procedure (ENVI, 1999) for SAV species identification. SFF is 
an algorithm that compares image spectral data to a set of reference spectra, 
in this case, the field-measured spectral library database, by a least-squares 
fit of the continuum-removed spectra (Clark et al., 1999). The spectral library 
database of field-collected spectra of milfoil and wild celery was compared 
to each pixel in the hyperspectral image by the SFF procedure.

The algorithm produced two images, a scale image measuring the depth 
of the absorption feature of interest, and a root-mean-square (rms) error 
image that indicates the degree of match between the reference spectra from 
the spectral database to the image spectra. Both images were then used to 
identify SAV by “best match” to the reference spectra, resulting in a determi­
nation of dominant SAV species in each target pixel.

Results and Discussion

Hyperspectral Imagery Interpretation
SAV beds were present and datable in the airborne hyperspectral imagery of 
Blossom Point. The two species of SAV and water were found to be spectrally 
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separable (Figure 8.2). The absorption band depths at 681 nm and to a lesser 
extent 574 nm were more pronounced for milfoil than wild celery (Figure 8.3). 
This difference was likely due to the way the SAV plant canopy interacts 
with light (Asner, 1998).

The fully submerged profile of wild celery can be characterized as being 
meadow forming. Plant stems are mostly vertical. If the remote sensor is 
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Figure 8.2  Relative reflectance spectra of two species of SAV and ambient water. 
(Williams D. J., N. B. Rybicki, A. V. Lombana, T. M. O’Brien, and R. B. Gomez. 2003. 
Environmental Monitoring and Assessment, 81(1–3), 383–392. With permission.)
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Figure 8.3  Continuum removed spectra of water and two species of SAV. 
(Williams D. J., N. B. Rybicki, A. V. Lombana, T. M. O’Brien, and R. B. Gomez. 2003. 
Environmental Monitoring and Assessment, 81(1–3), 383–392. With permission.)
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oriented at a nadir position, the plant tissue surface available as a reflecting 
target is negligible.

Milfoil is a canopy-forming species. Stems are vertical near the bottom, 
but this species also has numerous small branches that form horizontal 
surfaces. This type of orientation presents a much larger reflectance target 
relative to the sensor.

Interactions of the plants with epiphyte colonization are another source of 
spectral variation. These colonies, which can be made up of algae, sediment, 
bryophytes, and other micro and macro organisms, coat the SAV leaf surface 
and therefore decrease the amount of light reaching the leaf surface (Orth 
et al., 1982; Stankelis et al., 2000). The species milfoil, due to its morphology, 
has more surface area for epiphyte attachment than the species wild celery. 
Comparison of spectra obtained in the laboratory for milfoil with and with­
out attached epiphytes indicates that the absorption at approximately 574 nm 
is mostly a result of epiphytes and sediment coating on the SAV.

Two remnant beds of milfoil and wild celery were identified by the 
hyperspectral technique. The locations of the beds correspond well to the 
locations of the bed during the peak growing season determined by the 
U.S. Geological Survey (USGS). The accuracy of the SAV species map that 
was derived from hyperspectral remote sensing was compared to the USGS 
National Research Program SAV map, which was derived using field data 
and aerial photography. The USGS map shows SAV abundance and distribu­
tion on 31 August 2000, and does not reflect the coverage of the SAV at the 
time of the hyperspectral overflight. Nevertheless, the USGS map reinforces 
species determinations from the hyperspectral project and can be used to 
estimate the accuracy of the results.

Conclusion

Further research into the spectral signatures of various SAV species with a 
focus on biochemical differences is warranted. Proper timing of the over­
flight to collect SAV spectra before dense epiphyte colonization might allow 
for more accurate species identification.
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Forestry Applications
Foresters who are responsible for maintaining the health and viability of our 
forests rely on early detection schemes to let them know when a problem 
may be arising. To determine changes in the condition and amount of 
the vegetation, remote sensing imagery from airborne and satellite-based 
sensors has been used to map forested areas. Forest stands experiencing 
higher stress can then be examined on the ground to identify the causes of 
the stress (e.g., beetle attack, root rot, poor site conditions).

The two studies below discuss the use of hyperspectral imagery to study 
and map two indicators of forest health: insect infestation and chlorophyll 
content. In the first study, Lawrence and Labus (2003) used hyperspectral 
imagery to detect a Douglas-fir beetle infestation in its early stages, and 
in the second study, Sampson et al. (2003) used hyperspectral imagery to 
estimate the chlorophyll content in tolerant hardwoods.

Using the information from these types of studies aids researchers in 
tracking and treating potential problems before significant areas of the forest 
are destroyed. Ameliorative actions, if available, could be taken at earlier 
stages, which would reduce the adverse economic and forest health effects.

Case Study 1: Detecting Douglas-Fir Beetle Infestation
Introduction

Early detection of insect infestations and forest diseases, such as beetle or 
root rot, is important to foresters who want to minimize economic loss due 
to these threats (Schmitz and Gibson, 1996). In rugged terrain where Douglas 
fir (Pseudotsuga menziesii) often grows, this monitoring typically requires 
extensive work in the field that is both time consuming and expensive.

In the late 1990s, remote sensing imagery from airborne and satellite-
based sensors was used to map infestations. Unfortunately, this imagery 
lacked the spectral sensitivity to detect the problem before visual signs of 
the infestation become evident. Although newer hyperspectral instruments 
have this required sensitivity and can provide information comparable to 
spectra obtained in the laboratory, these instruments have lacked the spatial 
resolution to map individual tree canopies.

When commercial high-resolution, hyperspectral imagery became avail-
able, Lawrence and Labus (2003) conducted an assessment of tree stress 
to determine if they could detect the early stages of infestation or disease 
over large areas more quickly and efficiently than by ground observations. 
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Using the newest commercially available hyperspectral imagery, Lawrence 
and Labus extended the studies done by previous researchers to detect early 
stress caused by Douglas-fir beetle (Dendroctonus pseudotsugae) infestation at 
the individual tree or subcanopy level.

Insects, such as the Douglas-fir beetle, are considered agents of stress in 
forests because they adversely affect the physiology and growth of trees, often 
killing them. The Douglas-fir beetle occurs throughout much of the western 
United States, British Columbia, and Mexico (Schmitz and Gibson, 1996; 
Thomson et al., 1996). These beetles normally attack and kill small groups 
of trees, but during outbreaks, attacks on tree groups as large as 100 are not 
uncommon, especially in dense stands.

Early evidence of infestation consists of entry holes in the tree bark and 
frass expelled from bark crevices by invading beetles. Several months after 
a successful infestation, foliage exhibits chlorosis by turning yellow, then 
sorrel, and then reddish brown, with needles beginning to fall from infested 
trees the year following the attack. These changes in leaf physiology, 
chemistry, and photosynthetic efficiency affect the reflectance response of 
vegetation (Sampson et al., 1998). The detailed shape of the reflectance spectra 
and variables such as width, depth, skewness, and symmetry of absorption 
features can be measured and used to detect canopy stresses.

For example, leaf pigments, chlorophyll a and b, and chlorophyll fluores-
cence levels in leaves and needles of trees are highly related to visible and 
near-infrared ratios and indices, particularly red-edge indices, at the leaf 
and simulated canopy level (Sampson et al., 1998; Zarco-Tejada et al., 1999). 
Red-edge indices are calculated along the red/infrared boundary, where 
chlorophyll absorption in vegetation forms one of the most extreme slopes 
found in spectra of naturally occurring materials. In healthy, green vege-
tation, the edge is sharp and steep, but as vegetation becomes stressed or 
senescence starts, the width of the absorption band decreases, and the red 
edge shifts toward shorter wavelengths (Clark et al., 1995).

Methods

A Douglas-fir stand that was infested with the Douglas-fir beetle was located 
in the Lamar Valley of Yellowstone National Park, Wyoming. Sampled trees 
were selected randomly from 1:5,000 scale color infrared aerial photos. These 
trees were then clustered into tree health classes based on field observations 
and were grouped as:

	 1.	Healthy (H)—no sign of beetle infestation or other damage.
	 2.	Attacked (A)—beetle infestation present as evidenced in bark, but the 

tree crown remained green with no visual signs of decline.
	 3.	Dead (D)—successful beetle infestation that has killed the tree within 

the past year, evidenced by red or yellow foliage.
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All sampled trees were dominant or subdominant with a diameter ranging 
from 0.5 to 2 m at breast height.

A hyperspectral image swath of the sampled stand was collected at 
10 a.m. on 4 August 1999, from the Probe-1 sensor. The sensor was flown 
aboard a helicopter at 500 m, producing 1-m2 pixel size with an approxi-
mately 0.5-km swath width. The sensor collected 128 continuous spectral 
bands in the visible through SWIR spectral regions (0.4 to 2.5 μm). Spectral 
responses were also extracted for other cover types within the study areas, 
including light yellow (senescent) grass (LG) (8 pixels), heavy green grass 
(HG) (18 pixels), and shadow (SH) (18 pixels), to differentiate these spectral 
responses from the trees.

Individual and class-average spectra were plotted for visual examination 
of among-class separability. Of several analysis methods examined, the two 
best performing methods were stepwise discriminant analysis (DISCRIM) 
and classification and regression tree analysis (CART).

Results

Examination of spectral responses from individual trees showed classes 
grouping at different reflectance values in specific wavelengths, such as in the 
two sharp peaks at 1,000 and 1,100 nm, the wider peak around 1,250 nm, and 
the two large peaks at <1,500 nm (Figure 9.1). There were also considerable 
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Figure 9.1  Spectral responses at different reflectance values in specific wave-
lengths. (Lawrence, R., and M. Labus. 2003. Western Journal of Applied Forestry, 18(3), 
202–206. With permission.)
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overlaps among different classes in certain portions of the spectrum, even 
within those regions where some class separability existed. For example, 
only class SH separated well from the other classes in all portions of the 
spectrum due to the very low reflectance of shadow.

In the visible wavelengths, no vegetation class showed substantial sepa-
rability. At the NIR (near infrared) boundary (700–750 nm) and in the short-
wave IR region (especially 1,100–1,200 nm) where vegetation characteristics 
typically stand out, the D class was differentiated from the spectra of other 
green vegetation, but the H and A classes failed to differentiate. HG was 
separated from other classes with very high reflectance values within the 
750–800-nm and 1,000–1,100-nm range, was strongly mixed with other spectra 
in the 1,500–1,750-nm range, and then again separated into its own group in 
the 2,000–2,500-nm range, although with intermediate reflectance values at 
this wavelength. The H and D classes separated well in the 1,500–1,750-nm 
and 2,000–2,500-nm ranges, while the A class spectra overlapped the H class 
in these wavelengths.

An examination of average class spectra gave a clearer overview of class 
separability (Figure 9.1). Green vegetation separated from the D class in the 
peaks of the 400–800-nm and the 1,000–1,375-nm ranges. In the visible range, 
all classes except shadow were confounded. Two sharp reflectance peaks at 
1,007 and 1,069 nm showed promise for good class separability in all classes. 
At longer wavelengths (1,500–2,500 nm), grasses (heavy and light) were con-
founded with the D class. In addition, the averaged A spectrum was very 
similar to the H class, indicating poor separability for this important class at 
these longer wavelengths.

Discussion

The analysis demonstrated that subcanopy resolution hyperspectral imag-
ery could successfully distinguish among tree stress classes resulting from 
Douglas-fir beetle attack. Examination of the classification methods showed 
that the CART approach provided the best ability to separate tree health 
classes. The ability of CART to use different band combinations for each 
class in a rule-based classification allowed for maximum spectral separabil-
ity of tree health classes compared to DISCRIM, which required the same 
spectral bands for all classes. This ability was advantageous because tree 
health classes and other background classes were different in their physi-
cal and chemical characteristics, and thus spectral regions in which classes 
could be distinguished varied.

The main spectral profiles for each class showed these class spectra and 
the spectral regions where class distinctions could be made. Although the 
spectra were similar, slight shifts in the spectral regions of maximum sepa-
ration could be seen in all classes. CART used these slight differences in 
the spectra to build the classification tree, thus taking full advantage of the 
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spectral resolution afforded by hyperspectral imagery and reducing the 
spectral data to those bands that provided the best class distinctions.

This study showed that CART analysis of remote sensing data is a robust 
and easily implemented statistical method of classification without the 
need of extensive expert knowledge. Because this study was conducted in 
a single stand having one species and a single known source of tree stress, 
further studies will be necessary to determine how broadly the results 
are applicable. At least in this case, however, CART effectively created 
classification rules that distinguished the early stages of tree stress by using 
the full spectral capabilities of hyperspectral imagery. Thus, hyperspectral 
imagery of large forest stands might be useful in identifying areas of rela-
tive tree stress that would not otherwise be detected without prohibitive 
field reconnaissance.

Case Study 2: Estimating Chlorophyll Content in 
Tolerant Hardwoods
Introduction

The second case study for this chapter was conducted by Sampson et al. 
(2003), who used remote hyperspectral data to estimate the amount and 
type of chlorophyll content in hardwood trees. Developing spectral features 
related to chlorophyll or other pigments is useful in identifying whether 
forests are healthy or are stressed to the point where productivity of the 
resource may decrease.

The traditional method of assessing the health of a tree, a visual inspec-
tion, is subjective and does not directly measure tree vigor (Ferretti, 1997). 
In contrast, a nonvisual method that allows tracking of pigment concentra-
tions (e.g., chlorophyll) could provide an objective, early warning indicator 
of stand condition. Early detection could help to identify stands requiring 
remedial or salvage action before damage is visible and potentially before 
biomass loss occurs.

Optical indices derived from the red edge (the region of rapid transition 
between red and near infrared reflectance) are especially useful because 
they are sensitive to both chlorophyll content (chla+b) and canopy structure. 
Several investigators have related changes in chla+b to a shift in position of the 
spectral red edge (e.g., Horler et al., 1983; Vogelmann et al., 1993; and Gitelson 
et al., 1996). This shift has been associated with plant stress, forest decline, 
and leaf development (e.g., Rock et al., 1988; Boochs et al., 1990; Miller et al., 
1991; Hoque and Hutzler, 1992).

Stress can affect other physiological features such as leaf water content. 
However, changes in leaf water content are less sensitive than those of 
chla+b because they are measurable only under severe dehydration events 
(Carter, 1993).
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Nitrogen deficiency is the second greatest factor limiting tree growth, next 
to water stress (Kramer and Kozlowski, 1979). Foliar chla+b has been positively 
correlated with foliar nitrogen (N) in western red cedar (Thuja plicata D.) 
(Radwan and Harrington, 1986), big leaf maple (Acer macrophyllum P.) (Yoder 
and Pettigrew-Crosby, 1995), sugar maple (Acer saccharum M.) (Ellsworth, 
1999), and balsam fir (Abies balsamea L.) (Luther and Carrol, 1999).

Foliar chla+b has also been positively correlated with shoot growth rate in 
western red cedar (Radwan and Harrington, 1986) and balsam fir (Luther 
and Carrol, 1999) and with photosynthetic rate in sugar maple (Ellsworth, 
1999). Therefore, foliar chla+b is likely a sensitive indicator of tree physi-
ological condition.

Advances in technology, data processing, and scientific application of 
findings made remote sensing approaches more practical. Airborne hyper-
spectral technologies themselves progressed markedly, offering improved 
data capture and processing capabilities along with fine spectral and spatial 
detail. For example, the Compact Airborne Spectrographic Imager (CASI) 
was used in various forestry applications, which include conducting land 
classification (e.g., Zarco-Tejada and Miller, 1999), inventorying forests (e.g., 
Davison et al., 1999a, 1999b), assessing forest management practices (Sampson 
et al., 2001), detecting root rot (e.g., Reich and Price, 1999), and identifying 
insect damage (e.g., Leckie et al., 1989).

For the case study discussed below, Sampson et al. (2003) examined 
the use of CASI technology to estimate chla+b in a managed tolerant hard-
wood forest in the Algoma Region of Ontario, Canada. One objective was 
to determine if chlorophyll content could be predicted following different 
harvesting practices. The second objective was to estimate chla+b across 
seasons (i.e., conduct change detection analysis) on a range of maple sites. 
The overall aim was to develop a prototype system for monitoring forest 
physiological condition.

Discussion

Turkey Lakes Harvesting Impacts Project
Interpreting the findings of the Sampson et al. (2003) Turkey Lakes Harvesting 
Impacts Project (TLHIP) study requires some understanding of the likely 
factors affecting chla+b estimation. For instance, the wide range of LAI (leaf 
area index) values (from 1.1 to 4.2) and the fairly narrow range of chla+b (from 
26 to 56 µg/cm2) were likely reasons for the Root Mean Square Error (RMSE) 
being higher and the correlations lower than those found in a previous 
study using the same approach for sugar maple (Zarco-Tejada et al., 2001). 
When tree crowns are not dense (e.g., LAI values are less than 2), the spectral 
effect of the underlying soil and vegetation can mask the condition of foliage 
(Guyot et al., 1989).

L1654_C009.indd   92 10/31/07   12:11:38 PM



Chapter nine:  Forestry Applications	 93

Canopy geometry also influences the ratio of shadowed surfaces to illumi-
nated surfaces (i.e., bidirectional aspects). Zarco-Tejada et al. (2001) showed 
that chlorophyll estimates in closed maple stands (i.e., LAI greater than two) 
are not significantly affected by shadowed components when appropriate 
inversion methods are used. However, other species with open canopies 
and/or different canopy architectures (e.g., conical shape) could influence 
these predictions. To address these potential challenges, researchers are 
studying optimum view angles in different species and collecting airborne 
and field data on well-characterized sites using optically based methods (e.g., 
Chen, 1996).

Spectral Indices
Another challenge in estimating chla+b is choosing a spectral index. Evidence 
from both leaf- and canopy-scale experiments demonstrate that relation-
ships exist between pigment concentrations and narrow band reflectance, 
but many indices developed at the leaf level do not work at the canopy level 
because the leaf and canopy media have different optical properties. The 
large number of optical indices developed at the leaf level also makes it 
difficult to decide which index to use (Blackburn, 1999).

Most proposed spectral indices have been developed empirically, typi-
cally by combining bands that are sensitive and insensitive to stress. The 
advantage of this approach is that insensitive bands function as baselines 
that factor out variability due to causes other than variation in leaf chla+b. 
Similarly, spectral derivatives have important advantages over spectral 
reflectance; for example, they can reduce variability due to changes in illumi
nation or background reflectance (Elvidge and Chen, 1995). Myneni et al. 
(1995) quantified possible physical reasons for these observed correlations.

For this Sampson et al. (2003) case study, the researchers examined several 
indices for estimating chlorophyll in sugar maple at the leaf and canopy levels 
(Zarco-Tejada et al., 2001) and selected the spectral index (R750/R705). Widely 
used indices for pigment estimation, such as the Normalized Difference 
Vegetation Index (NDVI), primarily track canopy structural changes and are 
therefore considered insensitive to subtle changes in pigment content. The 
spectral index (R750/R705), on the other hand, offers a means to track chla+b 
semi-empirically (i.e., without detailed modeling) or predictively using 
model inversion.

Spatial Resolution
A final consideration in estimating chla+b is defining the optimal, spectral, 
and temporal resolutions because these resolutions are generally not 
known (Treitz and Howarth, 2000). This issue can be approached from two 
directions. The more common approach is to use the spatial resolution that 
will capture the spatial variability of the scene to be used. The spatial vari-
ability is a function of the type of environment being studied and the type 
of information required (Woodcock and Strahler, 1987). But selecting an 
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appropriate scale for vast forested areas is a challenge; Ontario alone has 
39 million ha of productive forest. This challenge was illustrated by Marceau 
et al. (1994) who examined natural forest environments at various scales and 
concluded that there is no unique spatial resolution at which all geographic 
entities could be discriminated.

A second, equally important approach is to choose a spatial resolution 
that ensures that the assumptions made in the remote sensing interpretation 
methodologies are valid. For example, at very high spatial resolution, crown 
reflectance and canopy reflectance must be distinguished in parameter 
retrieval results.

In an earlier study, Sampson et al. (2001) showed that an appropriate 
resolution (as derived by semivariogram analysis) is either approximately 
5 m or approximately 9 m, depending on whether physiological or struc-
tural parameters are being examined. Similarly, optimal spatial resolutions 
for several boreal forest species were shown to be in the order of 3 to 7 m 
(Treitz and Howarth, 2000). Extending these suggested resolutions to other 
environments may not be possible given the potential influences of factors 
such as terrain and sensor characteristics. However, the results do provide 
some guidance in considering the suitability of existing data sets and in 
developing sampling strategies in these forest types.

Chlorophyll Content (chla+b)
Chlorophyll content, including the ratio of chlorophyll a/b, could be affected 
by a range of intrinsic and extrinsic factors and is subject to considerable 
natural and stress-induced variation (Kozlowski and Pallardy, 1997a). 
For instance, chlorophyll content is higher in sun-adapted foliage than 
in shade leaves. Chlorophyll content is also influenced by genetic factors, 
which produce plants ranging from albinos, devoid of chlorophyll, to those 
showing various degrees of striping or mottling. Flooding or drought 
may induce chlorosis, and chlorophyll synthesis may be inhibited by leaf 
diseases. Chlorophyll content is also affected by seasonal cycles (Vogg et al., 
1998; Rosenthal and Camm, 1997) and by extreme air and soil temperatures 
(Kozlowski and Pallardy, 1997b). In addition, both chronic and acute injury 
from atmospheric pollutants may be manifested as chlorosis and then leaf 
senescence with symptoms more conspicuous in angiosperms than gymno
sperms, in seedlings rather than older trees, and in immature rather than 
mature foliage (Treshow and Pack, 1970).

Because of its nonspecific nature, reflectance should be used with caution 
when attempting to diagnose a stress. Reflectance could, however, be com-
bined with other analytical methods to pinpoint causal factors. For instance, 
the decline phenomenon in sugar maple found in Canada and the United 
States has been often been correlated with nutrient stress, especially calcium 
(Ca) and magnesium (Mg) (Bernier and Brazeau, 1988; Horsley et al., 2000).

The results from this case study (Sampson et al., 2003) show positive 
correlation (significant in all but one case) between foliar chla+b and Ca and 
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Mg content of leaves in both the change analysis sites and the TLHIP plots. 
Thus, the differences in chlorophyll content appear to relate somewhat to the 
nutrient stress status of the sugar maple stands. Incorporating spatial data 
such as soil type, terrain, and insect or disease surveys could offer greater 
insight into why chlorophyll changes are evident.

Monitoring Approach

The wide variety of factors producing chlorosis suggests that chlorosis could 
be caused by general disturbances of metabolism, as well as by deficiency 
(or toxicity) of a specific mineral element (Kozlowski and Pallardy, 1997a). 
To account for these factors, a diagnostic approach could be used to integrate 
various types of information (e.g., climatic, terrain, and vegetation) with data 
from sampling chlorophyll over several seasons to assess trends. A similar 
strategy would be to target a specific pest problem (such as root rot disease, 
e.g., Armillaria ostoyae) that causes chlorosis, and then to allow its spread 
and extent to be monitored. Alternatively, with a bioindicator approach 
(e.g., Sampson et al., 2000), the causal agents influencing chlorosis are not 
directly of interest, but rather attention is placed on identifying deviations 
from the “normal” chlorophyll range. All these strategies have merit, and the 
choice depends on management objectives and overall feasibility.

In this case study (Sampson et al., 2003), samples were collected under 
full leaf expansion prior to senescence on sites that included many scientific 
interests. The rationale was to minimize early- and late-season phenological 
changes that influence spectral response while targeting sites of long-term 
research importance. In addition, stand level assessments were emphasized 
because, as described by others (e.g., Mohammed et al., 1997; Colombo and 
Parker, 1999):

Stands are the basic operational management units in a forest ecosystem.
Stands have some uniformity of tree species and age, making it easier 
to compare physiological attributes among similar ecosystem units.
Stands provide a means to examine spatial variability of larger land 
units such as the landscape.

As satellite sensors that could estimate chla+b become available [e.g., MERIS, 
(Moderate-resolution Imaging Spectroradiometer) MODIS], target stands 
may still be used, but it may also be possible to explore regional patterns of 
variation. The red-edge index (R750/R705) will be useful because it provides a 
link between satellite and airborne platforms. This robust measure of chla+b 
minimizes the confounding influences of structure in tolerant hardwoods 
yet is sensitive to subtle changes in optical properties at both the leaf and 
canopy levels.

•
•

•
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Conclusion

Predicting chla+b or any other canopy biophysical parameter from airborne 
or satellite canopy reflectance is essential to many aspects of forest manage-
ment. Although statistical relationships have been widely used in estimating 
biophysical features, no predictive estimates can be inferred from these 
studies because these locally derived relationships are affected by species, 
canopy structure, and solar-viewing geometry. To advance the predictive 
capability for chla+b, radiative transfer (RT) simulation for leaf and canopy 
levels with red-edge indices such as R750/R710 and R750/R705 can be used in 
models that are both predictive and simplistic.

The practical implications of these findings are in providing an early 
warning measure of condition without needing ground data collection. This 
approach has several advantages over traditional ground surveys, which 
primarily rely on structural measures and subjective vigor estimates.

Although the research findings of the Sampson et al. (2003) and Lawrence 
and Labus (2003) case studies are encouraging, the robustness of the algo-
rithms and approaches needs to be addressed. In particular, applying this 
method in open canopies and for different species needs to be investigated. 
Moreover, if chlorophyll estimates and the CART classification method are 
to be used as monitoring tools, the factors affecting response need to be more 
fully understood.

The question of operational feasibility remains. The cost and limitations 
of airborne hyperspectral imagery must be considered; however, its utility 
increases when considering its broad applicability to many aspects of forest 
management, such as forest health monitoring and forest mapping and 
inventory. It would be helpful if hyperspectral data now obtained via aircraft 
became available at a reasonable cost via satellites. Ready access to satellite-
based pigment estimates of a well-known scene would also help us answer 
questions about its potential, as well as factors limiting its retrieval.
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Geology Applications
Using hyperspectral remote sensing to identify and map specific chemical 
and geometric patterns of the land is useful for studying geology, soil 
science, mining, land use, and hydrology. This information can be used to 
identify areas most likely to hold economically valuable deposits of minerals 
or petroleum.

Geologists can search vast territories looking for surface features that may 
indicate the presence of minerals in a certain area. Imaging spectroscopy 
allows specific absorption features, caused by chemical bonds in materials, 
to be mapped spatially. Materials maps are of minerals, mineral mixtures, 
vegetation (including species communities and vegetation communities 
maps), water, ice and snow, atmospheric gases, environmental materials, and 
man-made materials.

The two case studies in this chapter discuss the use of hyperspectral 
imagery to map and identify the mineralogy and chemistry of rocks and 
soils. In the first study, Hörig et al. (2001) used reference areas with known 
geometry and chemical properties, collected hyperspectral data using two 
different instruments, and compared the data to develop an optimum data 
correction and processing procedure.

Case Study 1: Detecting Hydrocarbons
In 1998, hyperspectral airborne scanners were used to directly detect 
hydrocarbon-bearing rocks and soils. This case study, called the Pro Smart 
Experiment, was organized by the German Aerospace Centre (DLR) and 
provided an opportunity to test the hyperspectral HyMap scanner designed 
by the Australian company Integrated Spectronics Ltd. Several European 
remote sensing organizations have used this experiment to evaluate the 
capability of this technology to clarify specific questions of geology, mining, 
land use, and hydrology.

In the Pro Smart Experiment, Hörig et al. (2001) used a large space in Berlin 
to prepare reference areas. The reference areas had a defined geometry and 
known chemical properties (e.g., sandy soil, oil-contaminated soil, grass, 
plastic tarpaulin). After collecting HyMap data for these areas, they compared 
their data with the spectra obtained simultaneously with the GER Mark V IRIS 
Infrared Intelligent Spectroradiometer. The HyMap data and the data provided 
by the Mark V IRIS were then used to develop an optimum data correction and 
processing procedure. The purpose of the processing was to unambiguously 
identify the hydrocarbon-bearing reference areas in the HyMap data.
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The Pro Smart Experiment had two goals. The first goal of this case study 
was to provide a simple methodology for the routine detection and mapping 
of hydrocarbons. The second goal was to improve the general knowledge of 
the spectral properties of hydrocarbons.

Methods and Sensors

Test Field
The test field was prepared in the Spandau district of Berlin. A large parking 
lot formerly used by military vehicles provided ideal conditions for the refer-
ence areas. The concrete surface of the parking lot, the lawn, single trees, and 
a gravel-paved area were used as additional reference objects. The reference 
areas were used to define the spectral properties of the reference objects, 
to evaluate the effect of undersampling in the case of small targets, and to 
define the limits of the method in the case of slightly contaminated targets 
with low-intensity spectral features.

Field Spectroscopy
The spectral properties of the reference areas were determined with a 
GER Mark V IRIS Infrared Intelligent Spectroradiometer. The Mark V was 
operated with a 7 × 3 degree dual field of view in the spectral range from 
0.385 to 2.548 μm (849 bands). The widths of its spectral band varied between 
2 and 6 nm. The spectroradiometer was mounted on a cart so that it could be 
quickly moved between the reference areas during the HyMap flights. The 
spectroscopic data were recorded as ratio spectra (percent reflectance) and as 
radiance spectra [μW/(cm2 nm sr)].

HyMap and HRSC-A Airborne Scanner

HyMap Scanner
Selected specifications of the HyMap scanner are shown in Table 10.1. The 
HyMap flights were carried out in September 1998. To obtain optimal spec-
tral and spatial resolution, the HyMap scanner was flown at a relatively low 
altitude. The original objective to obtain HyMap datasets of 1 m GIFOV 
(ground instantaneous field of view) was not achieved because even the 
lowest operating speed of the aircraft was too high. To eliminate any gaps 
between the scan lines (i.e., no undersampling), the minimum GIFOV needed 
to be approximately 4 m with a flight altitude of 2,000 m. Therefore, two 
separate flights were made at altitudes of 2,200 m and 11,378 m.

The 2,200-m flight provided data with 4.4 m across-tract (5.5 m along-track) 
GIFOV and full coverage of the ground. The 1,137-m flight was a compromise. 
Spatial resolution was better at this altitude (2.27 m across-track GIFOV, 
2.84 m along-track GIFOV), but because no further reduction of the aircraft’s 
speed was possible and the integration time of the scanning system could 
not be changed, gaps occurred between the scan lines. This undersampling 
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resulted from the 2.84-m along-track GIFOV (i.e., width of each scan line) and 
the 7.67 m between the centers of the pixels of each scan line.

HRSC-A Camera
The HRSC-A camera is the airborne version of the High Resolution Stereo 
Camera (HRSC) originally designed for space applications. The HRSC-A has 
a charge-coupled device (CCD) system with 5,272 pixels per line, 7-μm pixel 
size (i.e., 10 cm at 2,500-m altitude), and 8-bit radiometric resolution (Scholten 
et al., 1999).

DLR’s HRSC-A camera was operated simultaneously with the HyMap 
scanner. The HRSC-A camera provided high-resolution images of the area 
covered by HyMap. These images were used to verify the ground objects in 
the HyMap data and to rectify the HyMap images.

Results and Discussion

In most cases, visible to short-wave infrared spectra are recorded by a field or 
laboratory spectrometer as percentage reflectance of the incident radiation. 
Consequently, most spectra available from spectral databases are percentage 
reflectance spectra. The general advantage of percentage reflectance spectra 
is that they can be compared even if they were recorded at different times, at 
different geographic locations, and with different spectrometers.

In this case study, the HyMap pixel spectra were evaluated by comparison 
with the Mark V radiance spectra, which were made at the same time as the 
HyMap flights. This was done because the HyMap and Mark V instruments 
were calibrated in a similar way.

DLR applied radiometric corrections and correction for systematic errors 
to the radiance values of the HyMap data. Consequently, the digital number 
of each HyMap pixel was proportional to the absolute value of the radiance 
reflected by the ground and could be compared directly with the Mark V 
spectra of the respective reference area. Atmospheric corrections to the 
HyMap data were not necessary.

Table 10.1  Selected Specifications of the HyMap Scanner

Spectral range 0.440−2.543 μm

Spectral bands 128

Spectral band widths 10–20 nm

IFOV 2.5 mrad (along track); 2.0 mrad (across track)

GIFOV 5 m at 2,500-m operating altitude

Signal-to-noise ratio > 500:1

Source:	 Hörig B., F. Kühn, F. Oschütz, and F. Lehmann. 2001. International Journal of Remote 
Sensing, 22(8), 1413–1422. With permission.
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Figure 10.1 shows Mark V radiance spectra of selected reference areas. As 
already demonstrated by Clutis (1989), the hydrocarbon-bearing reference 
objects are characterized by absorption maxima at wavelengths of 1,730 and 
2,310 nm. In this case study, plastic objects (e.g., plastic tarpaulin) showed a 
relatively sharp absorption maximum at 1,730 nm, whereas this peak was 
less prominent in the spectra of oil-bearing soils and rocks. The question was 
whether this less prominent absorption peak (or radiance minimum) could 
be recognized in the HyMap pixel spectra, despite noise produced by the 
atmosphere between the scanner and the ground.

Figure 10.2 shows the HyMap pixel spectra of the same reference areas 
as in Figure 10.1. The spectra were calculated using ENVI image process-
ing. The same maxima/minima that are characteristic of hydrocarbons are 
present in both plots. Although less prominent, they are significant enough 
for hydrocarbon-bearing materials to be detected when the pixel spectra 
are evaluated. However, efficient mapping of the locations of hydrocarbons 
requires image processing capable of accentuating all pixels with such 
absorption maxima. All pixel spectra and images were from data obtained 
at 1,137-m flight altitude.

The best results were obtained for the 1,730-nm maximum/minimum 
defined by HyMap short wave infrared (SWIR)-1 bands 21 (1,668.22 nm), 
26 (1,729.31 nm), and 31 (17,88.98 nm). These bands were used for false color 
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Figure 10.1  GER IRIS Mark V radiance spectra. (Hörig B., F. Kühn, F. Oschütz, 
and F. Lehmann. 2001. International Journal of Remote Sensing, 22(8), 1413–1422. 
With permission.)
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composite (FCC) images based on SWIR-1 bands 21/red, 26/green, and 
31/blue combined with linear contrast stretching. The HyMap SWIR-1 bands 
21, 26, and 31 are located in a narrow portion (100 nm wide) of the electro-
magnetic spectrum. Consequently, most of the surface materials appear gray 
because they show similar spectral characteristics in this portion of the spec-
trum. Only the hydrocarbons appear colored due to their significant absorp-
tion features within the same narrow portion.

This procedure combined with linear stretching led to grayscale images 
with colored depiction of all hydrocarbon-bearing materials. Consequently, 
the oil-contaminated soil, the plastic tarpaulin, and the plastic sheet appeared 
pinkish. The intensity of the color of the large oil-contaminated reference 
areas was proportional to the oil content.

The percentage of the smaller areas covered by pixels could not be deter-
mined. However, the 2.27-m GIFOVs covering or touching the small oil-
contaminated reference areas (2 m × 2 m and 1 m × 1 m) appear slightly pinkish. 
Additionally, the lower limit on the aircraft speed caused undersampling.

Oil-contaminated soil and other materials made of hydrocarbons could 
be distinguished in color-composite images based on HyMap bands in the 
visible and the near-infrared portions of the spectra. In these parts of the 
spectrum, the colors of the objects help distinguish, for example, between 
plastic, artificial grass, roofing felt, and oil-contaminated soil. The Vis/NIR 
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Figure 10.2  HyMap spectra. (Hörig B., F. Kühn, F. Oschütz, and F. Lehmann. 2001. 
International Journal of Remote Sensing, 22(8), 1413–1422. With permission.)
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(visible to near infrared) HyMap spectra of hydrocarbon-bearing materials 
differ depending on the color of the material. Nevertheless, it was impossible 
to differentiate between hydrocarbons and non-hydrocarbons on the basis of 
the Vis/NIR part of the spectrum.

Conclusion

In this case study, the Pro Smart Experiment conducted by Hörig et al. (2001) 
showed that airborne hyperspectral remote sensing can be used to efficiently 
detect hydrocarbons on the ground surface. In radiance spectra, hydrocarbon-
bearing substances are characterized by typical absorption maxima at about 
1,730 nm and 2,310 nm. A high signal-to-noise-ratio hyperspectral imaging 
system makes it possible for these hydrocarbon-bearing substances to be 
recognized within the pixel spectra although they are less pronounced.

The existence and location of hydrocarbon materials and oil-contaminated 
soil can be detected and located directly and unambiguously using a simple 
data correction and processing procedure; it is not necessary to apply an 
atmospheric correction. Hörig et al. (2001) found that the SWIR part of the 
spectrum could be used to detect hydrocarbons and the Vis/NIR part to 
distinguish between different hydrocarbon-bearing materials.

A prerequisite for efficient mapping of hydrocarbons was the availability 
of a hyperspectral sensor with a high signal-to-noise ratio (HyMap) and 
simultaneous field spectroscopy data for well-defined reference areas so 
that the spectral signatures of the target objects could be defined. Using this 
approach, it should be possible to detect and map any objects (i.e., rocks, 
minerals, soils) directly in the same simple way, even if they are character-
ized by low-intensity radiance spectrum features.

Case Study 2: Mapping Alteration Zones 
Associated with Gold Mineralization
In the second case study, Ferrier and Wadge (1996) used data from the SWIR 
part of the spectrum to map the general location and amount of hydrous 
alteration minerals at a site in southern Spain. Being able to locate these 
minerals, which are associated with gold mineralization, is important for 
exploration geology.

Introduction

When fluid flow processes substantially alter the mineralogy and chemistry 
of host rocks, economically valuable mineralization can occur. This altera-
tion can produce distinctive assemblages of minerals that vary according to 
the location, degree, and longevity of those flow processes. But it doesn’t help 
anyone’s economy until the location of these minerals can be determined. 
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Once the minerals are exposed at the surface of the Earth, this alteration can 
sometimes be mapped as a zonal pattern around a core of the highest-grade 
alteration and greatest economic interest.

Narrow-band sensors such as the AVIRIS imaging spectrometer are 
capable of detecting spectral absorption in the visible to short-wave infrared 
specific to some individual minerals (Vane and Goetz, 1988). If these minerals 
are indicative of the type of alteration and are present in sufficient quantities 
at the surface from which solar radiation can be reflected to the sensor, then 
imaging spectrometers offer the prospect of a valuable, additional source of 
data for the exploration geologist.

This section discusses an area of gold mineralization at Rodalquilar in 
southern Spain. Rodalquilar is the site of the Transaccion gold mine, which 
was worked intermittently during the 20th century. Traditional maps of 
alteration “zones” were constructed for Rodalquilar based on field survey 
and laboratory work (Arribas et al., 1989; Hernandez et al., 1989). For this case 
study, Ferrier and Wadge (1996) then applied unmixing analysis, spectral 
curve matching, and absorption feature identification/analytical techniques 
to the data and compared the ground-based alteration maps with the results 
of the AVIRIS mapping.

Geological Background

Rodalquilar lies in the Sierra de Gata structural block of southern Spain, which 
is the most southeasterly of the internal zones of the Betic orogen. The Sierra 
de Gata trends northeasterly, is bounded to the northwest by a complex left 
lateral strike slip fault zone, and is characterized by calcalkaline volcanism 
of Miocene age, whose deposits dominate the geology at the southern end. 
Between 14 and 11 Ma silicic magmatism developed beneath earlier volcanic 
rocks comprising hornblend- and pyroxene-bearing andesites.

Two Valles-type calderas, the Las Frailes Caldera (Cunningham et al., 
1989) and the Rodalquilar Caldera further north (Rytuba et al., 1989), were 
identified. The deposits of these calderas include rhyolitic to dacitic 
ignimbrites and resurgent domes. Post-caldera volcanism reverted to the 
eruption of andesite lavas.

The epithermal gold mineralization at Rodalquilar is of the acid sulphate 
type (Heald et al., 1987), hosted by rhyolitic ignimbrite deposits and domes 
within the caldera. There are economic ores of gold-alunite and lead-zinc-
silver-gold veins, principally concentrated in ring and radial fractures around 
the western margin of the Cinto caldera (Transaccion mine), and alunite 
deposits in the Los Tollos area at the northeastern margin of the Rodalquilar 
caldera (Arribas et al., 1989)

The gold-bearing ores were concentrated in a few square kilometers at the 
center of the zone of alteration that filled much of the Rodalquilar Caldera 
and extended to a depth of 200 m below the paleosurface. Alteration was 
proved by drilling depths of over 900 m. Similar low- to high-grade alteration 
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zones were encountered upward and inward toward the Cinto areas, which 
is interpreted as the focus of upwelling hot acidic fluid.

Spectral Character of Alteration Assemblages

Reflectance spectroscopy of rocks and minerals can give useful diagnostic 
information on their elemental and mineralogical composition (Hunt, 1977). 
The remote application of this technique (e.g., Vane and Goetz, 1988) from 
airborne sensors finds its most obvious application in the mapping of hydro-
thermally altered rocks (e.g., Krohn, 1986; Rast, 1991). This is because many 
of the alteration minerals that were produced have distinctive absorption 
features caused by the presence of OH and other hydroxyl bonds, Mg-OH, 
and Al-OH, particularly in the SWIR part of the spectrum (2,000–2,400 nm).

The main diagnostic minerals of the alteration zones at Rodalquilar were 
quartz-alunite, pyrophyllite, kaolinite, illite, and vermiculite. Laboratory 
reflectance spectra, with wavelength positions, depths, and number of absorp-
tion features mainly in the 1,400-, 1,700-, 1,900-, and 2,200-nm regions of the 
spectra, should allow researchers to determine the minerals present and 
then form the basis for mapping the zonation from an equivalent remote 
sensor such as AVIRIS.

However, a number of factors inhibit mineral-identification mapping in this 
case. The AVIRIS data themselves are less accurate than laboratory spectra. The 
spectral resolution is coarser (10 nm as opposed to 1 to 2 nm or less for labora-
tory spectrometers), is noisier, and has an effective loss of signal in the 1,400-nm 
and 1,900-nm regions where atmospheric water absorbs the radiation.

The nature of the ground surface further affects the value of the reflected 
signal. The overall brightness or albedo of the signal (and hence the magni-
tude of any absorption features) depends on the local relief and exposure of 
altered rock. Therefore, at Rodalquilar, the “active” mine surface workings 
tend to dominate the areas from which good spectral information can be 
extracted, and the workings may not represent in situ rock (e.g., dumps).

An iron-rich thin soil is common at Rodalquilar, and a soil sheet wash, 
down steep slopes, tends to mask the rock signal. Patchy senescent vege
tation practically obscures some areas. The proportion of these hydrous 
minerals in the rocks is small—the original rhyodacites had over 70% silica 
and alteration has introduced even more—and some zones contain intimate 
mixtures of more than one “diagnostic” mineral. Finally, the 20-m by 20-m 
field of view of the AVIRIS sensor means that, in addition to the intimate 
hand-specimen level of mineral mixing, the signal received at the plane is an 
integrated mix of contributions from different rock types at the scale of 10 m 
and also from many of the other unwanted effects listed above.
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AVIRIS Data

The AVIRIS consists of four separate spectrometers. Signal-to-noise ratios 
for the first three spectrometers were good, averaging about 100 for bright 
targets and in the range of 100–50 for dark targets. Unfortunately, the 
D-spectrometer that recorded the SWIR produced very noisy data through-
out the MAC EUROPE ’91 campaign, apparently because of a damaged opti-
cal fiber cable. The signal-to-noise ratio for the D-spectrometer, therefore, 
was poor, averaging about 12 in the central part of the range (near 2,200 nm) 
but falling off to 5 or less at either limit for bright targets and staying below 
5 for dark targets throughout the range. Therefore, the part of the spectrum 
most useful for identifying hydrous mineral contained no data of value for 
dark targets in our data although there was some useful information from 
areas of high albedo.

Retrieval of Apparent Surface Reflectance

Empirical Line Method
The empirical line method for the recovery of surface reflectance has been 
described in a number of papers (e.g., Roberts et al., 1986; Conel et al., 1987). 
The empirical line method is based on the following simplified equation:

	 DNb = ρ(λ)Ab + Bb

where DNb equals the digital number for a given pixel in band b, ρ(λ) equals 
the reflectance of the surface materials within that pixel at the wavelength λ 
of band b, Ab equals the multiplicative term that affects the DN (transmit-
tance and instrumental factors) and Bb equals the additive term (primarily 
atmospheric path radiance and instrumental offset, i.e., dark current).

Four homogeneous ground targets of reasonable size and varying bright-
ness were chosen, and the appropriate AVIRIS pixels were identified from the 
image data. The single field of view IRIS spectrometer (SIRIS) ground spectra 
for each target were then averaged and subsequently convolved to the band-
widths of the AVIRIS instrument. The AVIRIS DN were then plotted against 
the SIRIS-measured surface reflectance values for each target. The best fitting 
plot was determined using a least-squares fitting technique. The slope of the 
resulting line is the gain for that band and the y-intercept is the offset. Better 
statistics can be obtained by using more surface calibration targets.

The empirical line method was seen to be critically dependent on the 
quality, number, and localities of the ground spectra. This method is also 
very sensitive to topographic variations with a large error introduced in 
areas of even moderate relief (Conel et al., 1987).

The modeled spectra using radiosonde data gave the best overall results. 
However, the essential requirement for accurate topographic information 
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to correct the total water path could be an expensive and limiting factor in 
many areas.

The spectra modeled by radiative transfer methods are similar and correlate 
highly with the library spectra. In this case study, Ferrier and Wadge (1996) 
found that water path profiles retrieved from the imaging spectrometer data 
satisfactorily corrected the remotely sensed data for atmospheric effects. This 
obviates the requirement for radiosonde data to be acquired at the time of 
the overflight and subsequently corrected for topographic variation. It also 
eliminates the requirement for ground spectra to be obtained at a number of 
targets at the time of the overflight.

Results

Spectral Matching
As stated earlier, areas of high albedo have SWIR signal-to-noise ratios of 
about 12—around 2200 nm. This is sufficient to match AVIRIS SWIR spectra 
to library spectra at modest match scores of 30–50 (0–200 full range) and 
delineate areas of hydrous minerals obviously associated with the acid-
sulphate-type mineralization. Kaolinite/dickite (the strongest), pyrophyllite, 
calcite, gypsum, muscovite, and montmorillonite matches were found. 
However, the lack of identification of alunite, which does have absorptions 
in the SWIR and which can be identified from the C-spectrometer data, 
throws considerable doubt on the value of individual pixel identifications by 
Automatic Intelligent Material Location and Identification System (AIMLIS). 
In this case study, most of the matches were only indicative of the presence 
of an absorption feature around 2,200 nm due to either Al-OH or Mg-OH 
although some of the highest kaolinite/dickite identifications at match scores 
of 70 could have been genuine (Wadge et al., 1993).

Spectral Unmixing

The Rodalquilar scene was unmixed using about 130 of the bands from 
spectrometers A–C condensed to 13 principal component bands and 12 end-
members selected from the image, including four “alteration” endmembers. 
Output of the mixing was restricted to produce only the two dominant 
components in each pixel, and the results were presented as maps in which 
individual alteration endmembers were the dominant proportion. Three of 
the four endmembers were suggested to be alunite, illite, and kaolinite. The 
endmembers clustered around the heart of the alteration zone, but apart 
from the correlation with alunite, they showed no simple correlation to the 
alteration zones mapped on the ground. Further attempts at a more detailed 
unmixing analysis on a subscene that was centered on the mine were made 
using various band combinations and endmembers, but these did not prove 
successful, probably because the endmember spectra were too similar.
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Conclusion

A comparative assessment of various methods of calculating apparent reflec-
tance values for AVIRIS data shows that radiative transfer modeling using 
image-derived water vapor abundances performs almost as well as methods 
requiring radiosonde data.

Unlike earlier researchers who have also used data from the 2,000– 
2,400-nm range to detect alunite, in this case study, Ferrier and Wadge (1996) 
demonstrated the ability of AVIRIS data to map the spatial distribution of 
alunite at Rodalquilar using only the combined depths of absorption features 
at 1480 and 1,760 nm. In addition, SWIR data (2,000–2,400 nm) at signal-to-
noise ratios of 12–5 were sufficient to map the general location and amount 
of hydrous alteration minerals at Rodalquilar but not to identify individual 
zone minerals. Finally, detailed ground and laboratory analysis of the nature 
of mineral assemblages and their spectral integration are needed to under-
stand high-quality imaging spectrometry data of alteration zones.
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A
Above ground level (AGL), 24
Absorption spectra, derived from 

MODTRAN, 37f
Abundances, 59
ACORN, see Atmospheric CORrection Now
Advanced Spaceborne Thermal Emission 

and Reflection Radiometer 
(ASTER), 17

AGL, see Above ground level
AGPS, see Airborne global positioning 

system
Ahmedabad district, 64
AIMLIS, see Automatic Intelligent Material 

Location and Identification System
Airborne data collection products, 28−29
Airborne global positioning system (AGPS), 

24
Airborne Imaging Spectrometer (AIS) flight, 

64
Airborne Visual and Infra-Red Imaging 

Spectrometer (AVIRIS), 17, 51, 107, 
108

	 data, 109 
	 false-color composite, 61f
AIS, see Airborne Imaging Spectrometer
AISA, 17
	 airborne sensors, 19
	 Airborne Spectrometer, measurement 

characteristics, 76t
	 remote sensing instrument, 76−77
	 spectra measurements, 78t
Albedo, 47
Algoma Region (Canada), 92
Algorithm development, 42−43
Alteration assemblages, spectral character, 108
Alunite deposites, 107
Angles, solid and plane, 7−8
AOI, see Area of interest
Aquatic vegetation, mapping submerged, 

80−84
Area of interest (AOI), 25
ASTER, see Advanced Spaceborne Thermal 

Emission and Reflection 
Radiometer

ATCOR, see Atmospheric CORrection

Atmosphere, hyperspectral remote sensing 
and, 31−37

Atmospheric absorption, 31
Atmospheric conditions, 22
Atmospheric CORrection (ATCOR), 52
Atmospheric CORrection Now (ACORN), 53
	 4.10 software, 70
Atmospheric correction theory, 13
Atmospheric interactions, 31−35
Atmospheric path radiance, 10−13
Atmospheric reflection, 31
Atmospheric scattering, amount, 32−35
Atmospheric transmission, 35−37
	 effect, 37f
	 solar irradiance and self-emission 

comparison, 36f
Automatic Intelligent Material Location and 

Identification System (AIMLIS), 110
AVIRIS, see Airborne Visual and Infra-Red 

Imaging Spectrometer

B
Bakerian lecture (Young), 6
Band file (BND), 26
Band wavelengths, 26
Band widths, 26
Berlin, Spandau district, 102
Bi-directional reflectance distribution 

function (BRDF), 47
Biomass, 65
Blackbody radiation, 10, 10f
BND, see Band file
BRDF, see Bi-directional reflectance 

distribution function

C
CAD, see Computer-aided design
Calcium, 94
CART, see Classification and regression 

tree analysis
CASI, see Compact Airborne Spectrographic 

Imager
CCD, see Charge-coupled device
Change detection, 60, 60f
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Charge-coupled device (CCD), 18, 19, 103
	 detection, 19
Chi-a, 76
Chlorophyll absorption, 67
Chlorophyll content, 94−95
	 factors affecting, 94−95
	 forest management implications, 96
	 in hardwoods, 91−96
	 monitoring, 95
	 spatial resolution, 93−94
	 spectral indices, 93
	 wheat spectra and inflection wavelength, 

69f
Cinto caldera, 107
Class separability analysis, 90
Classification
	 style and intent, 40
	 supervised and unsupervised, 40−41
Classification and regression tree analysis 

(CART), 89, 90, 91
Colors, temperature and, 2
COMET, 52
Compact Airborne Spectrographic Imager 

(CASI), 17, 92
Complete linear spectral unmixing, 45−46
Computer-aided design (CAD), 25
Condition, 22, 23f
Configuration, 23−25
Crop growth
	 inflection wavelength and, 68
	 parameters, 64−70
Crosstrack (R.3:xtrack) correction, 26

D
Data, vs. information, 39−40, 39t
Delineation, vs. identification, 58−59
Department of Defense (DoD), U.S., 2,3
Dholka Taluka, 64
Diffuse scattering, 5−6
Diffuse skylight, 14
Digital number (DN), 19
	 file, 26
Dimensions, geometric properties for, 57t
Diminishing returns, 48
DIS, see Downwelling irradiance sensor
DISCRIM, see Discriminant analysis
Discriminant analysis (DISCRIM), 89, 90
Disease management, sugar industry, 70
DLR, see German Aerospace Centre
DN, see Digital number
DoD, see Department of Defense
Double slit experiment, 2

Douglas-fir beetle infestation, 87−91
	 class separability analysis, 90−91
	 early evidence, 88
	 study methods, 88−90
	 tree health classes, 88
Downwelling irradiance sensor (DIS), 24

E
Earth Radiation Budget Satellite (ERBS), 12f
Earth Resources Data Analysis System 

(ERDAS), 43, 51
	 Imagine, user interface, 52f
Earth Resources Technology Satellite (ERTS), 

3
EarthWatch, 51
EFFORT, see Empirical Flat Field Optimal 

Reflectance Transformation
Einstein, Albert, 3
Electromagnetic radiation (EMR), 32−33
Electromagnetic spectrum, 3−4, 4 f
	 x-ray portions of, 11
Electro-optical sensor, 18f
Emission, 4−6
Emissive radiation, 5
Empirical Flat Field Optimal Reflectance 

Transformation (EFFORT), 70
EMR, see electromagnetic radiation
Endmembers, 40, 58
Environment, hyperspectral remote sensing, 

75
Environment for Visualizing Images 

(ENVI™), 43
	 interface and sample, 51, 51f
ENVI™, see Environment for Visualizing 

Images
Epiphytes, 81
	 colonization, 84
ERBS, see Earth Radiation Budget Satellite
ERDAS, see Earth Resources Data Analysis 

System
ERTS, see Earth Resources Technology 

Satellite
EUV, see Extreme ultraviolet
Extreme ultraviolet (EUV), 11

F
Faculae, 11−12, 12f
Fallow plot, 65
False color composite (FCC), 65, 104−105
FCC, see False color composite
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Feature extraction, 41−42
Field of view (FOV), 19
Field spectroscopy, 102
Filaments, 12f
File extensions, 28
Finland lakes study
	 classification samples, 75−76
	 data and instruments, 76−77
	 discussion, 79−80
	 methods, 77−79
	 retrieval algorithms, 77−79
Flight management system (FMS), 25
Florida citrus groves, 63−64
Fluid flow processes, 106
Flux, 8−9
FMS, see Flight management system
Foliage chlorosis, 88
Forest health indicators, 87
FOV, see Field of view
Full width at half maximum (FWHM), 19, 21
FWHM, see Full width at half maximum

G
Galileo, 4
Gaussian model, inverted, 65−67
Geographic Information System (GIS), 28
Geolocation data, 26
Geological map, simplified, 62f
GER Mark V IRIS Infrared Intelligent 

Spectroradiometer, 101, 102
German Aerospace Centre (DLR), 101
GIFOV, see Ground instantaneous field of view
GIS, see Geographic Information System
Global Positioning System (GPS), 23
Gold mineralization (Rodalquilar, Spain), 107
	 alteration zones, mapping, 106−111
	 geological background, 107−108
Gold-alunite, 107
GPS, see Geolocation data; Global Positioning 

System
GRD, see Ground-resolved distance
Ground instantaneous field of view (GIFOV), 

102−103
Ground-sampled distance (GSD), 18, 19, 46−47
Ground Truth Radiometer, 64 
GSD, see Ground-sampled distance
GTR, see Ground Truth Radiometer
Gujarat state, 64

H
HATCH, see High-Accuracy Atmosphere 

Correction of Hyperspectral data
Heavy green grass (HG), 89
Herschel, William, 2
HFBA, see Hierarchical Foreground/

Background Analysis
HG, see Heavy green grass
Hierarchical Foreground/Background 

Analysis (HFBA), 42
High Resolution Stereo Camera (HRSC), 103
High-Accuracy Atmosphere Correction of 

Hyperspectral data (HATCH), 53
High-resolution TRANsmission (HITRAN), 52
HITRAN, see High-resolution TRANsmission
Hornblend- and pyroxene-bearing andesites, 

107
HRSC, see High Resolution Stereo Camera
Hydrocarbon detection, 101−106
	 study results, 103−106
HyMap, 17
	 data, 101
	 datasets, 102−103
	 pixel spectra, 104−106, 105f
	 scanner, 102−106, 103t
Hyper, 3
Hyperion, 17
	 sensor image, 70
Hyperspace, 57−58
Hyperspectral, 3
	 bands vs. multispectral bands, 20
	 data processing workflow, 27f
Hyperspectral cube, 48−50
	 image, 49f
	 pollen grain image, 49f
Hyperspectral imaging
	 origins, 1−3
	 imagery strength, 47
Hyperspectral information extraction, 57−62
Hyperspectral pattern recognition, 50f
Hyperspectral remote sensing 
	 applications, 101
	 atmosphere and, 31−37
	 framework, 2
	 principles, 6

I
Identification, vs. delineation, 58−59
IFOV, see Instantaneous field of view
IKONOS, 17
	 spaceforne sensors, 19
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Image information, 46−48
IMAGINE, 51
Imaging spectrometers, 17−29
IMU, see Inertial measurement unit
Indian Space Research Organization (ISRO), 

Space Applications Center, 64
Inertial measurement unit (IMU), data, 24
Inertial navigation system (INS), 47
Inflection wavelength
	 crop growth and, 68
	 wheat spectra and LAI, 69f
Information vs. data, 39−40t
Infrared (IR), 11
Inherent Optical Properties (IOP), 77
INS, see Inertial navigation system
Instantaneous field of view (IFOV), 19
Integrated Spectronics Ltd., 101
Itensity file, 26
Interference
	 constructive and destructive, 2
	 pattern, 2 f
Interocular pressure, 61f
Io, reflected light of, 4
IOP, see Inherent Optical Properties
IR, see Infrared
Irradiance, 8−9
	 solar, 10−13
ISRO, see Indian Space Research Organization
ITT (Leica), 43, 44f

J
Jupiter, reflected light of, 4

L
LAI, see Leaf area index
Lake water quality, classifying, 75−80
Lakes study, 75−80
Lambertain scattering, 5−6
LANDSAT, 17, 51 
	 Thematic Mapper, 63
Las Frailes Caldera, 107
Lead-zinc-silver-gold veins, 107
Leaf area index (LAI), 14, 64−65
	 meter, 64
Leaf pigments, 88
Leaf surface, 14f
Leaf water content, 91
Leica Geosystems GIS, 51
Leica, 43
LG, see Light yellow grass

LIDAR, 17
Light Detection and Ranging, 17
Light, speed of, 4
Light yellow grass (LG), 89
Linear mixing, 59−60
Los Tollos, 107

M
Ma silicic magmatism, 107
Mackay Sugar cooperative, 70
Magnesium, 94
Map layers, 28
Mapping, LLC, 51
Mark V, 102
	 IRIS, 101
	 radiance spectra, 104, 104f
Mass median diameter (MMD), 47
Matched filtering, 46
MATLAB, 53
	 sample window, 54f
Medium Resolution Imaging Spectrometer 

(MERIS), 76
MERIS, see Medium Resolution Imaging 

Spectrometer
Mie scattering, 33, 34, 34f
	 principles, 34f
Milfoil, 84
Minimum noise fraction (MNF), 70
Mission planning, 25
Mixing, 22f
MMD, see Mass median diameter
MNF, see Minimum noise fraction
MODerate spectral resolution atmospheric 

TRANsmittance (MODTRAN), 
52, 53

	 absorption spectra from, 37f
MODTRAN, see MODerate spectral 

resolution atmospheric 
TRANsmittance

Moisture loss, 73
Molecular absorption, 32
	 lines, 32t
Monochrome cameras, 3
Multi, 3
Multispectral bands vs. hyperspectral bands, 

20f

N
Narrow-band sensors, 107
NASA, see National Aeronautics and 

Space Administration
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National Aeronautics and Space 
Administration (NASA), 2, 3

NAV, see Navigation file
Navigation file (NAV), 26
NDVI, see Normalized Difference 

Vegetation Index
Near-infrared (NIR) region, 71
Newton, Isaac, Principia Mathematica, 1−2
NIR, see Near-infrared region
Nitrogen deficiency, 92
Nonlinear mixing, 59−60
Nonselective scattering, 33, 34−35
Normalized Difference Vegetation Index 

(NDVI), 93
North Pole Dome, 62f
Nutrient stress, 94

O
Optical image data, information extraction, 

39−54
Optical nerve head mapping, 61f
Optical thickness, total zenith, 35f
Orange rust disease, 70−73
	 spectral reflectance signatures, 71
	 statistical analysis, 71
ORBIMAGE, 51
Oxygen breathing, 61f

P
Panchromatic cameras, 3
Partial Least Squares (PLS) regression, 42
Patch test, 26
Pattern recognition, 50−51
Photon data collection, 23−24
Photon, 3
	 data collection, 23−24
Pixel unmixing, 59
Planck, Max, 3
Plane angles, 7−8
Platforms, NOAA-9 and 10, 12f
PLS, see Partial Least Squares
Principia Mathematica (Newton), 1−2
Prism, light passing through, 1f
Pro Smart Experiment, 101
	 field spectroscopy, 102
	 goals, 102
	 HyMap scanner, 102, 103t
	 methods, 102
	 results, 103−106
	 sensors, 102
	 test field, 102

Proximity, 22f
Pseudotsuga menziesii, see Douglas fir
Pushbroom method, 23−24

Q
QuickBird, 17
	 data, 60f

R
RADAR, see Radio Detection and Ranging
RADARSAT, 51
Padian, 8f
Radiance, 8−10
	 atmospheric path, 10−13
	 SI unit, 8, 9
Radiant emittance, 9
Radiant exitance, 9
Radiation
	 blackbody, 10, 10f
	 heat transfer, 4−5
Radiative transfer (RT), 96
Radio Detection and Ranging (RADAR), 17
Rayleigh scattering, 33−34
	 principles, 34f
Reflectance, 5, 9−10
	 values, spectral responses at, 89f
Reflected light interaction, 47f
Reflection, 4−6
	 specular vs. diffuse, 6f
Regression algorithms, 76
Remote sensing intrument, 76−77
Resolution, 19
RMSE, see Root Mean Square Error
Rodalquilar Caldera, Spain, 107
	 diagnostic minerals at, 108
Roemer, Olaf, 4
Root Mean Square Error (RMSE), 92
RT, see Radiative transfer
R.3:xtrack, see Crosstrack correction

S
SAIL, see Scattering by arbitrarily inclined 

leaves
SAIL2, see Scattering by arbitrarily inclined 

leaves, two-component model
SAM, see Spectral angle mapper
Satellite remote sensing instruments, 79
Satellite sensors, 17
Scattering, 33−34
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Scattering by arbitrarily inclined leaves 
(SAIL), 13−15

	 model simulations, 14f
	 two-component model (SAIL2), 15
Secchi depth, 76
Sediment coating, 81
Self-emission, atmospheric transmission, and 

solar irradiance comparison, 36f
Sensors, 17−21
SFF, see Spectral feature fitting
SH, see Shadow
Shadow (SH), 89
Shoot growth rate, 92
Short wave infrared (SWIR)
	 analysis, 71
	 bands, 104, 105
	 moisture-sensitive bands in region, 73
	 regions, 71
Sidelap, 25f
Sierra deGata, 107−108
Single field of view IRIS spectrometer (SIRIS), 

109
Single-band images, optical nerve head, 61f
Singular Value Decomposition (SVD), 42
SIRIS, see Single field of view IRIS 

spectrometer
SMM, see Solar Maximum Mission
Smooth surface reflectance, 31f
SNA, see Spectral Mixture Analysis
Soil reflectance, 14
Solar energy reflection, 47
Solar irradiance, 10−13
	 30-year cycle, 11f
	 measurement of, 11
	 self-emission, and atmospheric 

transmission comparison, 36f
Solar Maximum Mission (SMM), 12f
Solid angle, 7−8
	 cube, 8f
Space Imaging, 51
Space Shuttle Columbia, 46
Spaceborne, 17
Spectral, 3
Spectral angle mapper (SAM), 43−44, 44f 
Spectral classes, 41f
Spectral cube components, 48f
Spectral feature fitting (SFF), 44−45
	 analysis, 45f
Spectral irradiance, 9
Spectral libraries, 58
Spectral maps, 60−62
Spectral matching, 110
Spectral Mixture Analysis (SMA), 41−42
Spectral pattern recognition, 50−51

Spectral radiance, soil, 65f
Spectral radiometry, principles, 7
Spectral resolution, 20f
Spectral responses, reflectance values and, 89f
Spectral signature, 40
Spectral unmixing, 110
	 complete linear, 45−46
Spectral vegetation indices (SVIs), 70
Spectrometers, imaging, 17−29
	 confusions and misconceptions, 21−22
Spectrum, visible, 2 f
Specular reflection, 5 f
Specular scattering, 5−6
Sphere, surface area, 8
SPOT, 51
Standard products, 28−29
Submerged aquatic vegetation (SAV)
	 field spectroscopy, 81
	 hyperspectral data, 81−82
	 hyperspectral imagery interpretation, 

81−83
	 image processing, 81−82
	 relative reflectance spectra, 83f
	 species, 82
	 study results, 82−84
	 study site, 81
	 study, 80−81
	 water continuum removed spectra, 83f
Sub-pixel analysis, 45
Sugarcane disease, 70−73
	 management, 70
	 orange rust, Hyperion pixel reflectance 

spectra, 72f
Sunspots, 11−12,12f
Surface features, 22
Surface reflectance retrieval
	 empirical line method, 109−111
	 spectral matching, 110
	 spectral unmixing, 110
SVD, see Singular Value Decomposition
SVIs, see Spectral vegetation indices
SWIR, see Short wave infrared region
System integration, 23−25

T
Target interactions modeling, 13−15
Temperature, colors and, 2
Tetracorder, 44
Thermal radiation, 5
TLHIP, see Turkey Lakes Harvesting 

Impacts Project
Transaccion mine, 107
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Tree stress, 87−91
Turbidity, 76
Turkey Lakes Harvesting Impacts Project 

(TLHIP), 92−93

U
UARS, see Upper Atmospheric Research 

Satellite
Ultraspectral information extraction, 57−62
Ultraviolet (UV), 11
Upper Atmospheric Research Satellite 

(UARS), 12f
U.S. Geological Survey (USGS), 44, 84
U-2 high-altitude reconnaissance plane, 3
USGS, see U.S. Geological Survey
UV, see Ultraviolet

V
Valles-type calderas, 107
Vegetation
	 distribution map, 63f
	 mapping, 61f
Very near infrared (VNIR), 71
Vis/NIR HyMap spectra, 105−106
Visalpur village, data analysis, 65−67

Visible to near infrared, see Vis/NIR HyMap 
spectra

VNIR, see Very near infrared, 71

W
Watts per square meter, 9
Wheat crop, spectral radiance, 66
Wheat-growing area, 64
Wheat plots, 65
	 chlorophyll content, 68
	 growth states, 67−68
	 inflection wavelength, 68
Wheat spectra
	 inflection wavelength and chlorophyll 

content, 69f
	 inverted Gaussian fit, 68f
	 reflectance, 67f
Whiskbroom method, 23−24
Whole-pixel analysis, 43
Wild celery, 83, 84
W/m², 9
Workflow, 26−28
	 hyperspectral data processing, 27f

Y
Young, Thomas, 1−2, 6
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